• Title/Summary/Keyword: backpropagation neural network (BPNN)

Search Result 17, Processing Time 0.03 seconds

Prediction of plasma etching using genetic-algorithm controlled backpropagation neural network

  • Kim, Sung-Mo;Kim, Byung-Whan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1305-1308
    • /
    • 2003
  • A new technique is presented to construct a predictive model of plasma etch process. This was accomplished by combining a backpropagation neural network (BPNN) and a genetic algorithm (GA). The predictive model constructed in this way is referred to as a GA-BPNN. The GA played a role of controlling training factors simultaneously. The training factors to be optimized are the hidden neuron, training tolerance, initial weight magnitude, and two gradients of bipolar sigmoid and linear functions. Each etch response was optimized separately. The proposed scheme was evaluated with a set of experimental plasma etch data. The etch process was characterized by a $2^3$ full factorial experiment. The etch responses modeled are aluminum (A1) etch rate, silica profile angle, A1 selectivity, and dc bias. Additional test data were prepared to evaluate model appropriateness. The GA-BPNN was compared to a conventional BPNN. Compared to the BPNN, the GA-BPNN demonstrated an improvement of more than 20% for all etch responses. The improvement was significant in the case of A1 etch rate.

  • PDF

A Performance Comparison of Backpropagation Neural Networks and Learning Vector Quantization Techniques for Sundanese Characters Recognition

  • Haviluddin;Herman Santoso Pakpahan;Dinda Izmya Nurpadillah;Hario Jati Setyadi;Arif Harjanto;Rayner Alfred
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.101-106
    • /
    • 2024
  • This article aims to compare the accuracy of the Backpropagation Neural Network (BPNN) and Learning Vector Quantization (LVQ) approaches in recognizing Sundanese characters. Based on experiments, the level of accuracy that has been obtained by the BPNN technique is 95.23% and the LVQ technique is 66.66%. Meanwhile, the learning time that has been required by the BPNN technique is 2 minutes 45 seconds and then the LVQ method is 17 minutes 22 seconds. The results indicated that the BPNN technique was better than the LVQ technique in recognizing Sundanese characters in accuracy and learning time.

Random generator-controlled backpropagation neural network to predicting plasma process data

  • Kim, Sungmo;Kim, Sebum;Kim, Byungwhan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.599-602
    • /
    • 2003
  • A new technique is presented to construct predictive models of plasma etch processes. This was accomplished by combining a backpropagation neural network (BPNN) and a random generator (RC). The RG played a critical role to control neuron gradients in the hidden layer, The predictive model constructed in this way is referred to as a randomized BPNN (RG-BPNN). The proposed scheme was evaluated with a set of experimental plasma etch process data. The etch process was characterized by a 2$^3$ full factorial experiment. The etch responses modeled are 4, including aluminum (Al) etch rate, profile angle, Al selectivity, and do bias. Additional test data were prepared to evaluate model appropriateness. The performance of RC-BPNN was evaluated as a function of the number of hidden neurons and the range of gradient. for given range and hidden neurons, 100 sets of random neuron gradients were generated and among them one best set was selected for evaluation. Compared to the conventional BPNN, the proposed RC-BPNN demonstrated about 50% improvements in all comparisons. This illustrates that the RG-BPNN of multi-valued gradients is an effective way to considerably improve the predictive ability of current BPNN of single-valued gradient.

  • PDF

Modeling High Power Semiconductor Device Using Backpropagation Neural Network (역전파 신경망을 이용한 고전력 반도체 소자 모델링)

  • Kim, Byung-Whan;Kim, Sung-Mo;Lee, Dae-Woo;Roh, Tae-Moon;Kim, Jong-Dae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.290-294
    • /
    • 2003
  • Using a backpropagation neural network (BPNN), a high power semiconductor device was empirically modeled. The device modeled is a n-LDMOSFET and its electrical characteristics were measured with a HP4156A and a Tektronix curve tracer 370A. The drain-source current $(I_{DS})$ was measured over the drain-source voltage $(V_{DS})$ ranging between 1 V to 200 V at each gate-source voltage $(V_{GS}).$ For each $V_{GS},$ the BPNN was trained with 100 training data, and the trained model was tested with another 100 test data not pertaining to the training data. The prediction accuracy of each $V_{GS}$ model was optimized as a function of training factors, including training tolerance, number of hidden neurons, initial weight distribution, and two gradients of activation functions. Predictions from optimized models were highly consistent with actual measurements.

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks II - Process Modeling using Backpropagation Neural Network - (인공신경망에 의만 생물공정에서 2차원 영광스펙트럼의 분석 II - 역전파 신경망에 의한 공정의 모델링 -)

  • Lee Kum-Il;Yim Yong-Sik;Sohn Ok-Jae;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.299-304
    • /
    • 2005
  • A two-dimensional (2D) spectrofluorometer was used to monitor various fermentation processes with recombinant E. coli for the production of 5-aminolevulinic acid (ALA). The whole fluorescence spectral data obtained during a process were analyed using artificial neural networks, i.e. self-organizing map (SOM) and feedforward backpropagation neural network (BPNN).Based on the classified fluorescence spectra a supervised BPNN algorithm was used to predict some of the process parameters. It was also shown that the BPNN models could elucidate some sections of the process performance, e.g. forecasting the process performance.

Genetic Control of Learning and Prediction: Application to Modeling of Plasma Etch Process Data (학습과 예측의 유전 제어: 플라즈마 식각공정 데이터 모델링에의 응용)

  • Uh, Hyung-Soo;Gwak, Kwan-Woong;Kim, Byung-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.315-319
    • /
    • 2007
  • A technique to model plasma processes was presented. This was accomplished by combining the backpropagation neural network (BPNN) and genetic algorithm (GA). Particularly, the GA was used to optimize five training factor effects by balancing the training and test errors. The technique was evaluated with the plasma etch data, characterized by a face-centered Box Wilson experiment. The etch outputs modeled include Al etch rate, AI selectivity, DC bias, and silica profile angle. Scanning electron microscope was used to quantify the etch outputs. For comparison, the etch outputs were modeled in a conventional fashion. GABPNN models demonstrated a considerable improvement of more than 25% for all etch outputs only but he DC bias. About 40% improvements were even achieved for the profile angle and AI etch rate. The improvements demonstrate that the presented technique is effective to improving BPNN prediction performance.

Nonlinear Compensation Using Artificial Neural Network in Radio-over-Fiber System

  • Najarro, Andres Caceres;Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In radio-over-fiber (RoF) systems, nonlinear compensation is very important to meet the error vector magnitude (EVM) requirement of the mobile network standards. In this study, a nonlinear compensation technique based on an artificial neural network (ANN) is proposed for RoF systems. This technique is based on a backpropagation neural network (BPNN) with one hidden layer and three neuron units in this study. The BPNN obtains the inverse response of the system to compensate for nonlinearities. The EVM of the signal is measured by changing the number of neurons and the hidden layers in a RoF system modeled by a measured data. Based on our simulation results, it is concluded that one hidden layer and three neuron units are adequate for the RoF system. Our results showed that the EVMs were improved from 4.027% to 2.605% by using the proposed ANN compensator.

Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws (용접결함의 형상인식을 위한 신경회로망 알고리즘의 성능 비교)

  • 김재열;심재기;이동기;김창현;송경석;양동조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.271-276
    • /
    • 2003
  • In this study, we compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to two algorithm. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we comfirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

  • PDF

Adaption of Neural Network Algorithm for Pattern Recognition of Weld Flaws (용접결함 패턴인식을 위한 신경망 알고리즘 적용)

  • Kim, Chang-Hyun;Yu, Hong-Yeon;Hong, Sung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 2007
  • In this study, we used nondestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of weld flaws. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from weld flaws in time domain. Through this process, we compared advantages/ disadvantages of two algorithms and confirmed application methods of two algorithms.

Probabilistic bearing capacity assessment for cross-bracings with semi-rigid connections in transmission towers

  • Zhengqi Tang;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.309-321
    • /
    • 2024
  • In this paper, the effect of semi-rigid connections on the stability bearing capacity of cross-bracings in steel tubular transmission towers is investigated. Herein, a prediction method based on the hybrid model which is a combination of particle swarm optimization (PSO) and backpropagation neural network (BPNN) is proposed to accurately predict the stability bearing capacity of cross-bracings with semi-rigid connections and to efficiently conduct its probabilistic assessment. Firstly, the establishment of the finite element (FE) model of cross-bracings with semi-rigid connections is developed on the basis of the development of the mechanical model. Then, a dataset of 7425 samples generated by the FE model is used to train and test the PSO-BPNN model, and the accuracy of the proposed method is evaluated. Finally, the probabilistic assessment for the stability bearing capacity of cross-bracings with semi-rigid connections is conducted based on the proposed method and the Monte Carlo simulation, in which the geometric and material properties including the outer diameter and thickness of cross-sections and the yield strength of steel are considered as random variables. The results indicate that the proposed method based on the PSO-BPNN model has high accuracy in predicting the stability bearing capacity of cross-bracings with semi-rigid connections. Meanwhile, the semi-rigid connections could enhance the stability bearing capacity of cross-bracings and the reliability of cross-bracings would significantly increase after considering semi-rigid connections.