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Genetic Control of Learning and Prediction:
Application to Modeling of Plasma Etch Process Data
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Abstract : A technique to model plasma processes was presented. This was accomplished by combining the backpropagation neural
network (BPNN) and genetic algorithm (GA). Particularly, the GA was used to optimize five training factor effects by balancing the
training and test errors. The technique was evaluated with the plasma etch data, characterized by a face-centered Box Wilson
experiment. The etch outputs modeled include Al etch rate, Al selectivity, DC bias, and silica profile angle. Scanning electron
microscope was used to quantify the etch outputs. For comparison, the etch outputs were modeled in a conventional fashion. GA-
BPNN models demonstrated a considerable improvement of more than 25% for all etch outputs only but he DC bias. About 40%
improvements were even achieved for the profile angle and Al etch rate. The improvements demonstrate that the presented technique

is effective to improving BPNN prediction performance.
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L. Introduction

Plasmas play a crucial role in etching and depositing thin films.
Prediction models of plasma processes are in demand for
characterization, diagnosis, and control of plasma equipment. First
principle models are subject to many simplifying assumptions due
to the lack of understanding of physical and chemical processes.
As an alternative, an adaptive neural network has been used to
build a prediction model of plasma processes [1-3]. Compared to
physical models, neural network models are advantageous in that
they do not require any assumptions while producing quick
predictions. Among the various neural network paradigms, the
backpropagation neural network (BPNN) [4] has been the most
widely adopted in plasma modeling. Constructing a BPNN model
is complicated by the presence of several training factors,
including the hidden neurons, training tolerance, initial weight
distribution, and function gradients [5]. Tn most applications,
training factor effects are typically optimized by experimentally
tuning each factor individually. For a simultaneous optimization
of training factors, a genetic algorithm (GA) [6] has been applied
to model plasma process [3,5]. The GA-applied model just
mentioned is somewhat limited in that only the training error was
optimized. By balancing both training and test errors, a better
prediction model is expected.

In this study, a BPNN model was constructed by controlling the
training and test errors during a genetic learning. This technique
was evaluated with the experimental data collected from the
etching of silica thin films [7]. For a systematic modeling, the etch
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process was conduced according to a statistical experimental
design. Optimized GA-BPNN models were compared to those
constructed in conventional way.

II. Experimental Data

Schematic diagram of an inductively coupled plasma etch
system is shown in Fig. 1. The process chamber serving as a
ground plane is pumped by a turbomolecular pump, and the
pressure is controlled by a down stream throttle valve. Gases are
introduced via a multihole shower head and radio frequency (RF)
bias power operating at 13.56 MHz is fed to the lower electrode
with the diameter of 8.5 inches via a matching network. The upper
chamber section was modified by a ceramic cylinder, through
which RF source power is coupled via a multiturn helical coil
operating at 2 MHz. The cylinder is closed at the upper end by a
grounded electrode.
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. Schematic of plasma etch system.
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Test patterns were fabricated on p-type silicon wafers of 5 inch
diameter. A buffer-clad layer of about 25 um was deposited by the
flame hydrolysis deposition method. The core layer of 8§ um
thickness was subsequently formed, which was formed as SiO,-
P,05-B,03-GeO,. Here the percentages of P, B, and Ge were all
less than 1%. After the evaporation of AlSi(1%) of about 400 nm,
the waveguide was patterned using a contact aligner. The
AlSi(1%) layer was first etched in a BCly/Cl,/CHF; plasma using
the Plasma Therm reactive ion etch system, where the RF power
and pressure were set to 150 W and 10 mTorr, respectively. To
remove the layer completely, the layer was subsequently 30 %
overetched and the resist was then solvent-stripped. Following
this, the silica core layer was etched in a CFy/CHF; plasma using
a Plasma Therm 690 ICP etch system.

The process parameters that were varied include a source power,
bias power, and gas ratio. The total flow rate of gases, CHF; and
CF,, was set to 60 sccm and the flow rate of CHF; was varied
from 10 to 50 sccm. The gas ratio was defined as the flow rate of
CHF; divided by the flow rate of CF,. To characterize the etch
process, a 2° full factorial experiment [8] was used along with one
center point. The experimental parameter ranges employed in the
design are 100-800 W, 100-400 W, and 0.2-5.0, for the source
power, bias power, and gas ratio, respectively. Additional six
experiments were conducted to provide the test data for model
evaluation. Consequently, a total of 15 experiments were
conducted. The etch outputs modeled include a silica profile angle,
aluminum (Al) etch rate, Al selectivity to silica, and DC bias.
Using a Hitachi S800 scanning electron microscopy, the vertical
etch rate of'silica, R, was measured along with the vertical Al etch
rate. The Al selectivity is defined as the silica etch rate divided by
the Al etch rate. The profile angle (A) was estimated from the
schematic of front view of etched silica film, depicted in Fig. 2.
The A was defined as

2R

A= tan_l[

] M

where U and L represent the widths of the original and etched
patterns, respectively. The remaining DC bias was measured by a
DC volt meter embedded in a RF match network.
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Fig. 2. Schematic for etch measurements.
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Fig. 3. Schematic of BPNN.

I1I. Neural Network

As shown in Fig. 3, the BPNN consists of three layers of
neurons: input layer, hidden layer, and output layer. The number
of hidden layers was set to unity. A hidden neuron in the hidden
layer performs a nonlinear feature extraction on the data provided
by the input and output layers. Depending on the number of
hidden neurons (NHN), the BPNN prediction performance can
vary significantly. The activation level (or firing strength) of a
neuron in the hidden layer is determined by a bipolar sigmoid
function denoted as

)
Outi’k - _——in- . (2)
1+ e(— k)
gb

where in;, and out;, indicate the weighted input to the ith

neuron in the kth layer and output from that neuron, respectively.
The g, represents the gradient of the bipolar sigmoid function.
Meanwhile, the linear function adopted in the output layer is
expressed as

out; =in; -g (3)

where g represents the gradient of the linear function. Apart from
the three training factors (NHN, g, and g) already stated, the
initial weight distribution (IWD) and the training tolerance (TT)
influence the BPNN prediction considerably [5]. Hence, the total
number of training factors to optimize is five. As a weight update
scheme, meanwhile, the generalized delta rule [4] was adopted.

IV. Results

1. Conventional Model

BPNN models were constructed in conventional way. In other
words, the effects of training factors on the BPNN prediction
performance were optimized experimentally one by one. As an
illustration, the Al etch rate was modeled. First, the effects of three
training factors (TT, NHN, IWD) were optimized, followed by the
optimization of two gradients. The experimental ranges for TT,
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NHN, IWD employed in the first stage are 0.08-0.12, 2-4, and
10.2-1.6, respectively. The prediction error was quantified with

the root mean squared error (RMSE). For convenience, this error
is called “P-RMSE”. The results are shown in Table 1.

E 1Al AZE 2Ee| 45003
Table 1. Prediction performance of Al etch model.

P-RMSE P-RMSE P-RMSE

T (A/mi?l) NHN (A/mi?l) WD (A/min)
0.08 732 2 596 0.2 559
0.09 725 3 704 0.4 511
0.10 718 4 512 0.6 542
0.11 711 0.8 502
0.12 704 1.0 512
1.2 513
14 511
1.6 508
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Table 2. Prediction performance of Al selectivity model.

TT | P-RMSE | NHN | P-RMSE | IWD | P-RMSE
0.08 2.76 2 2.45 0.2 2.30
0.09 2.73 3 2.67 0.4 2.32
0.10 2.7 4 3.69 0.6 242
0.11 2.68 0.8 242
0.12 2.66 1.0 245

12 2.50
1.4 2.56
1.6 2.63
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Table 3. Prediction performance of profile angle model.

P-RMSE P-RMSE P-RMSE

T (Degree) NHN (Degree) WD (Degree)
0.08 3.66 2 4.66 0.2 3.57
0.09 3.65 3 3.64 0.4 3.44
0.10 3.65 4 3.47 0.6 3.59
0.11 3.64 0.8 3.58
0.12 3.65 1.0 347
1.2 3.53
1.4 3.73
1.6 4.02

# 4. DCbias EE9) oS,
Table 4. Prediction performance of DC bias model.

P-RMSE P-RMSE P-RMSE
TT ) NHN ) IWD )
0.08 77.3 2 89.6 02 828
0.09 774 3 77.3 0.4 80.3
0.10 77.5 4 98.6 0.6 78.4
0.11 77.6 0.8 79.1
0.12 77.7 1.0 773
1.2 75.2
14 74.2
1.6 76.8

From Table 1, one model with the smallest P-RMSE is obtained at
0.11 TT. It should be noted that in optimizing the TT effect the
values of NHN and IWD were set to 3 and 1, respectively. After
setting the TT to 0.11, the NHN was then varied and one
optimized model is obtained at 4 NHN. The corresponding P-
RMSE is much smaller than that for the preceding model. This
indicates that NHN affects the BPNN prediction accuracy
considerably. Despite many variations in the IWD, the resulting P-
RMSEs are no longer decreased appreciably. A slightly smaller
RMSE is obtained only for the model constructed at +1.6. In this
way, the training factors were optimized and the results are shown
in Tables 2-4 for the Al selectivity, profile angle, and DC bias,
respectively.

In the second stage of optimization, the gradient effect was
optimized while setting other training factors to their optimized
values. For this, the g, was increased from 0.4 to 2.0 with an
increment of 0.2. For each gy, the g, was varied in the same way as
g, Consequently, 81 combinations of function gradients were
generated and the corresponding P-RMSEs are shown in Fig. 4.
From Fig. 4, one best RMSE is obtained in the 10" case
composed of 0.4 g, and 0.8 g;. The corresponding P-RMSE is 434
A/min. Compared to the optimized P-RMSE determined in the
first stage, this demonstrates an improvement of about 14.5%.
This improvement reveals that the gradients affect the BPNN
prediction performance considerably. Using the same process,
other remaining three etch outputs were modeled and results are
shown in Table 5.
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Fig. 4. Prediction performance as a function of combinations of
function gradients.
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Table 5. Optimized training factors and prediction performances of
etch models.

Etch Outputs TT INHN[IWD| g, g |P-RMSE
Profile Angle (°) | 0.11 040804 2.85
Al Selectivity 0.12 0212112} 226
DC Bias (V) 0.08 14104 | 04 53.6
Al Etch Rate (A/min)| 0.12 080408 434
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Table 6. Experimental ranges of training factors employed in GA

2z
i
>
on
@
>
I
0T
0l
]
I

optimization.
Training Factors Ranges
TT 0.08-0.12
NHN 3-6
IWD 0.2-1.6
2 0.4-2.0
g 0.4-2.0
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Table 7. Prediction performance of GA-BPNN model for the Al etch

rate.

Q P-RMSE (A/min) Fitness
0.1 261 0.0400
0.3 323 0.0037
0.5 341 0.0042
0.7 385 0.0058
0.9 458 0.0094
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Table 8. Prediction performance of optimized GA-BPNN models.

Profile Angle Al DC Bias |Al Etch Rate
© Selectivity V) (A/min)
Q 0.3 0.5 0.3 0.1
TT 0.0924 0.082 0.1142 0.2668
NHN 9 3 8 7
IWD 27511 0.5770 1.4527 1.2300
b 1.1943 0.5313 0.5072 0.4200
& 0.4460 1.0641 1.1372 1.2800
P-RMSE 1.69 1.70 54 261

As an illustration, the same Al etch rate was optimized. The P-
RMSEs and the fitness for the optimized model are shown in
Table 7 as a function of Q. As shown in Table 7, the P-RMSE is
seen to increase with increasing Q. One optimized model is
obtained at 0.1, and the corresponding P-RMSE is 261 A/min.
This shows an improvement of about 39.8% compared to that for
the corresponding conventional model. By balancing both errors,
the P-RMSE could therefore be considerably improved (reduced).
2. GA-optimized Model

In GA optimization, the experimental ranges for the training
factors employed are shown in Table 6. The size of initial
population was 100. The crossover and mutation probabilities
were 0.9 and 0.1, respectively. The GA evolution was completed
at the generation number of 100. The fitness function was defined
as

Fitness =

@)
1+PI
Pl =QxT—RMSE +(1-Q)xP - RMSE ®)

where T-RMSE represents the model training error. The Q was
varied from 0.1 and 0.9 with an increment of 0.2. At each
generation, the constructed 200 models were evaluated and only
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Fig. 5. Comparison of prediction performance of conventional and
GA-BPNN models.

one model with the smallest P-RMSE was selected. This was
repeated for 100 generations and one finally optimized model was
then determined among 100 selected models.

In the same way, other etch responses were optimized and all
results are shown in Table 8. In Table 8, the optimized training
factors and P-RMSEs are shown. The percent improvements over
the conventional models determined earlier are shown in Fig. 5.
As shown in Fig. 5, for the DC bias, no improvement was
achieved. However, for the other three etch responses, the
improvements are noticeably large. These comparison results
strongly support that balancing the training and test errors is
effective to improving the GA-BPNN prediction capability.

V. Conclusions

In this study, the effect of training factors on the BPNN
prediction performance was optimized by using GA. GA played a
role of finding optimized training factor sets as a function of
trading factor between the training and test errors. For a
systematic modeling, the etch process was characterized by means
of a statistical experiment. The presented technique was evaluated
with a large number of etch outputs. Also, optimized GA-BPNN
models were compared to conventional models. The comparisons
revealed that GA-BPNN yielded better predictions in nearly all
etch models. This is a strong indicative that controlling the
presented technique is effective in improving the BPNN
generalization capability. The presented technique is general in
that it can be applied to any plasma process data.
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