• Title/Summary/Keyword: backfill

Search Result 600, Processing Time 0.019 seconds

Optimal Mixture Contents of Accelerated Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중전력구조물 급결성 유동화 뒷채움재의 최적배합비)

  • Cheon, Seon-Ho;Jeong, Sang-Seom;Lee, Dae-Soo;Cho, Hwa-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.395-404
    • /
    • 2005
  • This study is to evaluate the physical and mechanical characteristics of flowable backfill and search for the optimal mixture contents of it used for constructing underground power utilities. flowable backfill is known as soil-cement slurry, void fill, and controlled low-strength material(CLSM). The benefits of CLSM include reduced equipment costs, faster construction, re-excavation in the future, and the ability to place material in confined spaces such as narrow parts nearly impossible for compaction or perimeter of underground power cables. The flowable slurry mixture made with 9 types of soil and 6 types of accelerated mixtures in the laboratory were evaluated for bleeding, flowability, heat resistance, and unconfined compressive strength to meet the aim values of this study.

  • PDF

The Compatibility of Slurry Wall Materials with Leachate for Cut -off of Contaminated Sites (오염지역 차폐용 슬러리월 재료와 침출수의 반응 특성)

  • 이용수;정하익
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-16
    • /
    • 1997
  • Cut-off methods of controlling leachate migration from waste landfills and contaminated sites are studied. Permeability and chemical compatibility tests are prrforlned on slurry wall materials including soil-bentonite, cement-bentonite, cement / fly ash-bentonite, plastic concrete. Hydraulic conductivity of soil-bentonite mixture is the lowest of these four bacuill materials. The leachate from municipal solid waste has little influence on the permeability of the backfill materials. The bentonite slurry becomes flocculated and aggregated when exposed to the leachate. The results of the permeability test showed that the hydraulic conductivities of the backfill materials are in the order soil-beiltonite, Plastic concrete, cement-bentonite. And the result c: the compatibility test showed increase in permeability due to the effects of leachate. Thus, in designing the slurry wall it is essential to check the behaviour of the bentonite slurry and backfill materials on the compatibility with the contaminants.

  • PDF

The Utilization of Waste Foundry Sand as Backfill Material for Underground Electric Utility Systems (방식사의 지중 전력설비 되메움재로의 활용성 평가)

  • 이대수;홍성연;김경열;상현규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.201-207
    • /
    • 2003
  • In this paper, the utilization of waste foundry sand produced in the molding process is studied as a backfill material for underground electric utility systems such as concrete box structures and pipe lines for power supply. The physical, chemical and thermal properties for waste foundry sand are investigated far mechanical stability, environmental hazard and power transmission capacity Also its properties are compared with those of the natural river sand. The test results show that waste foundry sand can be utilized for underground concrete box structures as a backfill material; however, it can not be applied to underground pipe lines due to high thermal resistivity or low power transmission capacity.

Determination of active failure surface geometry for cohesionless backfills

  • Altunbas, Adlen;Soltanbeigi, Behzad;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.983-1001
    • /
    • 2017
  • The extent by which economy and safety concerns can be addressed in earth retaining structure design depends on the accuracy of the assumed failure surface. Accordingly, this study attempts to investigate and quantify mechanical backfill properties that control failure surface geometry of cohesionless backfills at the active state for translational mode of wall movements. For this purpose, a small scale 1 g physical model study was conducted. The experimental setup simulated the conditions of a backfill behind a laterally translating vertical retaining wall in plane strain conditions. To monitor the influence of dilative behavior on failure surface geometry, model tests were conducted on backfills with different densities corresponding to different dilation angles. Failure surface geometries were identified using particle image velocimetry (PIV) method. Friction and dilation angles of the backfill are calculated as functions of failure stress state and relative density of the backfill using a well-known empirical equation, making it possible to quantify the influence of dilation angle on failure surface geometry. As a result, an empirical equation is proposed to predict active failure surface geometry for cohesionless backfills based on peak dilatancy angle. It is shown that the failure surface geometries calculated using the proposed equation are in good agreement with the identified failure surfaces.

Horizontal Earth Pressure of the Backfill in the Narrowly Excavated Ground Considering Various Boundary Conditions (좁게 굴착된 뒤채움 지반의 경계조건에 따른 수평응력 변화에 관한 연구)

  • Kim, Hee Su;Ban, Hoki;Moon, Chang-Yeul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.11
    • /
    • pp.19-26
    • /
    • 2017
  • When narrowly excavated in the urban area, the wall of backfill space is not only symmetrical but also asymmetrical. In this case, the horizontal stress induced by backfilling depends mostly on the wall asymmetry and the wall friction angle. Therefore, in this study, the model test in the laboratory was conducted to investigate horizontal earth pressure with depth considering various boundary conditions such as base width, wall friction, relative density of backfill, and wall angle. As the wall is smoother and wall angle is lower from the bottom, the results showed higher the horizontal stresses due to the increase of vertical stresses.

A Case of Field Application of EPS Blocks and Its Performance (EPS블럭의 현장적용에 따른 하부지반의 거동 연구)

  • 장용채
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.15-28
    • /
    • 1998
  • The use of EPS application to construction field was introduced in this country very recently. Nevertheless, approximately a total of 210,000m3 of EPS application was conducted in less than four years. Main app.lication areas for the EPS method are : (1)backfill behind a bridge abutment constructed on soft clay soil, (2)embankment constructed on soft clay soil, and (3)backfill of gravity wall. Among these, about 70oA of EPS are used for (1) and (2) deb cribed above. In this study, an invesitgation was held for the application of the EPS method to backfill of a bridge abutment which was constructed on soft clay soil. Several instruments were installed around the construction site to invesitgate the behavior of the system. Then a Finite Element Analysis was conducted for comparison.

  • PDF

A Prediction of the Static and Dynamic Horizontal Active Thrusts Exerted by a Backfill Consisting of Two or Three Layers of Different Properties (2종류 또는 3종류의 흙으로 뒷채움이 구성될 경우의 정적 및 동적 수평주동토압합력 예측)

  • Kim, Hong Taek;Kang, In Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.65-76
    • /
    • 1991
  • A numerical solution method for the evaluation of the static and dynamic horizontal active thrusts exerted by a backfill, consisting of two or three layers of different properties, on a retaining wall is proposed in the present study based on the Mononobe-Okabe analysis. Using the proposed method, the efficient type in forming a backfill with two layers of different properties is analyzed. In addition, for the design examples of a backfill made up of two or three layers of different properties, the static and dynamic horizontal active thrusts computed using the soil property of each layer are compared with those obtained from the proposed method, and also the problems expected in design are presented based on the comparisons.

  • PDF

Shaking Table Tests for Evaluation of Seismic Performance of L-type Caisson Quay Walls (L형 케이슨 안벽 구조물의 내진성 평가를 위한 진동대 시험)

  • 한진태;황재익;이용재;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.148-156
    • /
    • 2003
  • Shaking table tests and pseudo-static analysis were performed, in this study, on newly-designed aseismatic L-type caisson quay walls, which were constructed by extending the bottom plate of gravity quay walls into the backfill soil. The L-type quay walls are expected to give economical benefits by reducing the cross-sectional area of the wall while maintaining its aseismatic efficiency as much as the classical caisson gravity quay wall. To confirm the effectiveness of the L-type structure, the geometry of L-type quay walls were varied for shaking table tests. And, to verify the influence of backfill soils on the seismic behavior of quay walls, additional shaking table tests were performed on the L-type quay wall after the backfill soils were replaced by gravels and light materials. As a result, it was found that L-type caisson quay walls are good earthquake resistant structures but increasing the length of bottom plate did not proportionally increase the effectiveness of the structure in its aseismatic performance. Replacing the backfill soils by the gravels and light materials, contrary to our expectation, was not an effective measure in improving the seismic performance of L-type caisson quay wall.

  • PDF

Effects of freezing and thawing on retaining wall with changes in groundwater level

  • Kim, Garam;Kim, Incheol;Yun, Tae Sup;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.531-543
    • /
    • 2021
  • Freezing and thawing of pore water within backfill can affect the stability of retaining wall as the phase change of pore water causes changes in the mechanical characteristics of backfill material. In this study, the effects of freezing and thawing on the mechanical performance of retaining wall with granular backfill were investigated for various temperature and groundwater level (GWL) conditions. The thermal and mechanical finite element analyses were performed by assigning the coefficient of lateral earth pressure according to phase change of soil for at-rest, active and passive stress states. For the at-rest condition, the mobilized lateral stress and overturning moment changed markedly during freezing and thawing. Active-state displacements for the thawed condition were larger than for the unfrozen condition whereas the effect of freezing and thawing was small for the passive condition. GWL affected significantly the lateral force and overturning moment (Mo) acting on the wall during freezing and thawing, indicating that the reduction of safety margin and wall collapse due to freezing and thawing can occur in sudden, unexpected patterns. The beneficial effect of an insulation layer between the retaining wall and the backfill in reducing the heat conduction from the wall face was also investigated and presented.

Correlation between Board Mortar and Defect Occurrence Rate in Apartment Bathroom Wall Tile (공동주택 욕실 벽타일 뒤채움과 하자발생량의 상관관계분석)

  • Hong, Ki;Nam, Dong-Hee;Koo, Kyo-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.55-56
    • /
    • 2023
  • The number of defect disputes occurring in apartment houses is increasing year by year, and among them, disputes caused by defects in tiles account for 28.2% of the total, which is an important defect in tiles. A representative tile defect in the defect dispute is the lack of tile backfill. Another dispute occurred that the standards for each organization are different as the 100% standard of the Ministry of Land, Infrastructure and Transport's building construction standard and 80% standard of the Architectural Institute of Korea's Building Technology Guidelines. In this study, it was analyzed the relationship between the amount of tile backfill and the amount of tile defects based on 100 defect litigation court appraisal documents. It was observed that the amount of defect in tile works tended to decrease as the amount of tile backfill increased. By presenting an appropriate amount of mortar to fill behind tiles in a defect dispute, the effect of reducing the defect dispute can be expected.

  • PDF