DOI QR코드

DOI QR Code

Determination of active failure surface geometry for cohesionless backfills

  • Altunbas, Adlen (Department of Civil Engineering, Beykent University) ;
  • Soltanbeigi, Behzad (Institute for Infrastructure & Environment, School of Engineering, University of Edinburgh) ;
  • Cinicioglu, Ozer (Department of Civil Engineering, Bogazici University)
  • Received : 2016.07.21
  • Accepted : 2017.01.23
  • Published : 2017.06.25

Abstract

The extent by which economy and safety concerns can be addressed in earth retaining structure design depends on the accuracy of the assumed failure surface. Accordingly, this study attempts to investigate and quantify mechanical backfill properties that control failure surface geometry of cohesionless backfills at the active state for translational mode of wall movements. For this purpose, a small scale 1 g physical model study was conducted. The experimental setup simulated the conditions of a backfill behind a laterally translating vertical retaining wall in plane strain conditions. To monitor the influence of dilative behavior on failure surface geometry, model tests were conducted on backfills with different densities corresponding to different dilation angles. Failure surface geometries were identified using particle image velocimetry (PIV) method. Friction and dilation angles of the backfill are calculated as functions of failure stress state and relative density of the backfill using a well-known empirical equation, making it possible to quantify the influence of dilation angle on failure surface geometry. As a result, an empirical equation is proposed to predict active failure surface geometry for cohesionless backfills based on peak dilatancy angle. It is shown that the failure surface geometries calculated using the proposed equation are in good agreement with the identified failure surfaces.

Keywords

Acknowledgement

Supported by : Scientific and Technological Research Council of Turkey

References

  1. Alshibli, K.A. and Sture, S. (2000), "Shear band formation in plane strain experiments of sand", J. Geotech. Geoenviron. Eng., 126(6), 495-503. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:6(495)
  2. Atkinson, J.H. (1981), Foundations and Slopes, McGraw-Hill, London, UK.
  3. Bang, S. (1985), "Active earth pressure behind retaining walls", J. Geotech. Eng., 111(3), 407-412. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(407)
  4. Benmeddour, D., Mellas, M., Frank, R. and Mabrouki, A. (2012), "Numerical study of passive and active earth pressures of sands", Comput. Geotech., 40, 34-44. https://doi.org/10.1016/j.compgeo.2011.10.002
  5. Bishop, A.W. (1971), "Shear strength parameters for undisturbed and remoulded soil specimens", Proceedings of the Roscoe Memorial Symposium, Cambridge University, Cambridge, MA, USA, pp. 3-58.
  6. Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65
  7. Butterfield, R., Harkness, R.M. and Andrews, K.Z. (1970), "A stero-photogrammetric method for measuring displacement fields", Geotechnique, 20(3), 308-314. https://doi.org/10.1680/geot.1970.20.3.308
  8. Caquot, A.I. and Kérisel, J.L. (1948), Tables for the Calculation of Passive Pressure, Active Pressure and Bearing Capacity of Foundations, Gauthier-Villars.
  9. Chakraborty, T. and Salgado, R. (2010), "Dilatancy and shear strength of sand at low confining pressures", J. Geotech. Geoenviron. Eng., 136(3), 527-532. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000237
  10. Chen, W.-F. and Liu, X.L. (1990), Limit Analysis in Soil Mechanics, Elsevier, 52 p.
  11. Cho, G.-C., Dodds, J. and Santamarina, J.C. (2006), "Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands", J. Geotech. Geoenviron. Eng., 132(5), 591-602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)
  12. Cinicioglu, O. and Abadkon, A. (2014), "Dilatancy and friction angles based on in-situ soil conditions", J. Geotech. Geoenviron. Eng., 141(4), 6014019.
  13. Coulomb, C.A. (1776), "An attempt to apply the rules of maxima and minima to several problems of stability related to architecture", Mem. Acad. Roy. des Sciences, 7, 343-382.
  14. Craig, R.F. (2004), Craig's Soil Mechanics, CRC Press.
  15. Desrues, J., Chambon, R., Mokni, M. and Mazerolle, F. (1996), "Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography", Geotechnique, 46(3), 529-546. https://doi.org/10.1680/geot.1996.46.3.529
  16. Fang, Y.-S. and Ishibashi, I. (1986), "Static earth pressures with various wall movements", J. Geotech. Eng., 112(3), 317-333. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(317)
  17. Goel, S. and Patra, N.R. (2008), "Effect of arching on active earth pressure for rigid retaining walls considering translation mode", Int. J. Geomech., 8(2), 123-133. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:2(123)
  18. Hanna, A. (2001), "Determination of plane-strain shear strength of sand from the results of triaxial tests", Can. Geotech. J, 38(6), 1231-1240. https://doi.org/10.1139/t01-064
  19. Hazarika, H. and Matsuzawa, H. (1996), "Wall displacement modes dependent active earth pressure analyses using smeared shear band method with two bands", Comput. Geotech., 19(3), 193-219. https://doi.org/10.1016/0266-352X(96)00003-1
  20. Ismeik, M. and Shaqour, F. (2015), "Seismic lateral earth pressure analysis of retaining walls", Geomech. Eng., Int. J., 8(4), 523-540. https://doi.org/10.12989/gae.2015.8.4.523
  21. Jaworski, A.J. and Dyakowski, T. (2001), "Application of electrical capacitance tomography for measurement of gas-solids flow characteristics in a pneumatic conveying system", Measure. Sci. Technol., 12(8), 1109. https://doi.org/10.1088/0957-0233/12/8/317
  22. Keshavarz, A. and Pooresmaeil, Z. (2016), "Static and seismic active lateral earth pressure coefficients for c-$\phi$ soils", Geomech. Eng., Int. J., 10(5), 657-676. https://doi.org/10.12989/gae.2016.10.5.657
  23. Lade, P.V. (1984), Failure Criterion for Frictional Materials, Wiley and Sons, London, UK.
  24. Lenoir, N., Bornert, M., Desrues, J., Besuelle, P. and Viggiani, G. (2007), "Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock", Strain, 43(3), 193-205. https://doi.org/10.1111/j.1475-1305.2007.00348.x
  25. Lesniewska, D. and Wood, D.M. (2011), "Photoelastic and photographic study of a granular material", Geotechnique, 61(7), 605-611. https://doi.org/10.1680/geot.8.T.017
  26. Leśniewska, D., Niedostatkiewicz, M. and Tejchman, J. (2012), "Experimental study on shear localization in granular materials within combined strain and stress field", Strain, 48(5), 430-444. https://doi.org/10.1111/j.1475-1305.2012.00838.x
  27. Loukidis, D. and Salgado, R. (2011), "Active pressure on gravity walls supporting purely frictional soils", Can. Geotech. J., 49(1), 78-97. https://doi.org/10.1139/t11-087
  28. Nadukuru, S.S. and Michalowski, R.L. (2012), "Arching in distribution of active load on retaining walls", J. Geotech. Geoenviron. Eng., 138(5), 575-584. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000617
  29. Niedostatkiewicz, M., Tejchman, J., Chaniecki, Z. and Grudzien, K. (2009), "Determination of bulk solid concentration changes during granular flow in a model silo with ECT sensors", Chem. Eng. Sci., 64(1), 20-30. https://doi.org/10.1016/j.ces.2008.08.035
  30. Niedostatkiewicz, M., Lesniewska, D. and Tejchman, J. (2011), "Experimental analysis of shear zone patterns in cohesionless for earth pressure problems using particle image velocimetry", Strain, 47(s2), 218-231. https://doi.org/10.1111/j.1475-1305.2010.00761.x
  31. Paik, K.H. and Salgado, R. (2003), "Estimation of active earth pressure against rigid retaining walls considering arching effects", Geotechnique, 53(7), 643-653. https://doi.org/10.1680/geot.2003.53.7.643
  32. Rankine, W.J.M. (1857), "On the stability of loose earth", Philosoph. Trans. Royal Soc. London, 147, 9-27. https://doi.org/10.1098/rstl.1857.0003
  33. Roscoe, K.H., Arthur, J.R.F and James, R.G. (1963), Determination of Strains in Soils by X-Ray Method, Defense Technical Information Center.
  34. Sadrekarimi, A. and Damavandinejad Monfared, S. (2013), "Numerical investigation of the mobilization of active earth pressure on retaining walls", Proceedings of 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, September.
  35. Salencon, J. (1977), Application of the Theory of Plasticity in Soil Mechanics, John Wiley and Sons.
  36. Schanz, T. and Vermeer, P.A. (1996), "Angles of friction and dilatancy of sand", Geotechnique, 46(1), 145-152. https://doi.org/10.1680/geot.1996.46.1.145
  37. Shukla, S.K. and Bathurst, R.J. (2012), "An analytical expression for the dynamic active thrust from c-$\varphi$ soil backfill on retaining walls with wall friction and adhesion", Geomech. Eng., Int. J., 4(3), 209-218. https://doi.org/10.12989/gae.2012.4.3.209
  38. Song, L., Zheng, D.F., Nian, T.K., Liu, B. and Yin, P. (2015), "Coefficient charts for active earth pressures under combined loadings", Geomech. Eng., Int. J., 8(3), 461-476. https://doi.org/10.12989/gae.2015.8.3.461
  39. Spangler, M.G. and Handy, R.L. (1982), Soil Engineering Harper and Row, New York, NY, USA.
  40. Stanier, S.A., Blaber, J., Take, W.A. and White, D.J. (2015), "Improved image-based deformation measurement for geotechnical applications", Can. Geotech. J., 53(5), 727-739. https://doi.org/10.1139/cgj-2015-0253
  41. Stroud, M.A. (1971), The Behaviour of Sand at Low Stress Levels in Simple-Shear Apparatus, University of Cambridge, UK.
  42. Tejchman, J. and Wu, W. (1995), "Experimental and Numerical Study of Sand-Steel Interfaces", Int. J. Numer. Anal. Method. Geomech., 19(8), 513-536. https://doi.org/10.1002/nag.1610190803
  43. Terzaghi, K. (1936), "A fundamental fallacy in earth pressure computations", Boston Society Civil Engineers Journal.
  44. Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley.
  45. Toyosawa, Y.I., Tamrakar, S.B. and Suemasa, N. (2006), "Redistribution of active earth pressures using movable earth support apparatus in centrifuge", Phys. Model. Geotech.- 6th ICPMG, pp. 1113-1118.
  46. Tsagareli, Z.V. (1965), "Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface", Soil Mech. Found. Eng., 2(4), 197-200. https://doi.org/10.1007/BF01706095
  47. Vardoulakis, I. (1980), "Shear band inclination and shear modulus of sand in biaxial tests", Int. J. Numer. Anal. Met. Geomech., 4(2), 103-119. https://doi.org/10.1002/nag.1610040202
  48. Wang, Y.-Z. (2000), "Distribution of earth pressure on a retaining wall", Geotechnique, 50(1), 83-88. https://doi.org/10.1680/geot.2000.50.1.83
  49. White, D.J., Take, W.A. and Bolton, M.D. (2003), "Soil deformation measurement using Particle Image Velocimetry (PIV) and photogrammetry", Geotechnique, 53(7), 619-631. https://doi.org/10.1680/geot.2003.53.7.619
  50. Yoshida, T. (1994), "Shear banding in sands observed in plane strain compression", Proceedings of Symposium on Localization and Bifurcation Theory for Soils and Rocks, Balkema, pp. 165-179.
  51. Yoshimoto, N., Wu, Y., Hyodo, M. and Nakata, Y. (2016), "Effect of relative density on the shear behaviour of granulated coal ash", Geomech. Eng., Int. J., 10(2), 207-224. https://doi.org/10.12989/gae.2016.10.2.207
  52. Zhuang, L., Nakata, Y. and Lee, I.M. (2013), "Localized deformation in sands and glass beads subjected to plane strain compressions", Geomech. Eng., Int. J., 5(6), 499-517. https://doi.org/10.12989/gae.2013.5.6.499

Cited by

  1. Evaluation of failure mode of tunnel-type anchorage for a suspension bridge via scaled model tests and image processing vol.24, pp.5, 2017, https://doi.org/10.12989/gae.2021.24.5.457
  2. Experimental and numerical study on behavior of retaining structure with limited soil vol.26, pp.1, 2017, https://doi.org/10.12989/gae.2021.26.1.077