• Title/Summary/Keyword: back-propagation

Search Result 1,469, Processing Time 0.024 seconds

Self-tuning Nonlinear PID Control Using Neural Network (신경망을 이용한 자기동조 비선형 PID제어)

  • Kim, Dae-Ho;Kim, Jung-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2102-2104
    • /
    • 2001
  • This paper present the strategy of self-tuning nonlinear PID control using neural network. The nonlinear PID controller consists of a conventional PID controller and a neural network compensator. The neural network is trained by back-propagation algorithm. In this paper we propose modified back-propagation algorithm to improve learning speed. The results of simulation show the usefulness of the proposed scheme.

  • PDF

Personalized Wire and Wireless News Retrieval System Using Intelligent Agent (지능형 에이전트를 이용한 개인화된 유.무선 뉴스 검색 시스템)

  • Han, Seon-Mi;Woo, Jin-Woon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.609-616
    • /
    • 2001
  • Today, as the Internet is popularized, information and news retrieval are generalized. However due to the tremendous amount and variety of information, many users appeal the difficulties of information retrieval. Thus in this paper, we propose a news retrieval system, which filters news articles using an intelligent agent with the learning ability of BPN (back propagation neural network). This system also uses a profile to accomodate the personalized news retrieval. This system consists of two major agents, collection agent and learning agent. The collection agent gathers the articles from several news sites, analyzes them, and stores into a database. The learning agent builds the BPN based on the personalized data. In addition, considering the popularity of the wireless internet due to the rapid development of communication technologies, we made this system provide the service through the wireless internet.

  • PDF

Traffic Sign Recognition Using Color Information and Error Back Propagation Algorithm (컬러정보와 오류역전파 알고리즘을 이용한 교통표지판 인식)

  • Bang, Gul-Won;Kang, Dea-Wook;Cho, Wan-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.809-818
    • /
    • 2007
  • In this thesis, the color information is used to extract the traffic sign territory, and for recognizing the extracted image, it proposes the traffic sign recognition system that applies the error back propagation algorithm. The proposed method analyzes the color of traffic sign to extract and recognize the possible territory of traffic sign. The method of extracting the possible territory is to use the characteristics of YUV, YIQ, and CMYK color space from the RGB color space. Morphology uses the geometric characteristics of traffic sign to make the image segmentation. The recognition of traffic signs can be recognized by using the error back propagation algorithm. As a result of the experiment, the proposed system has proven its outstanding capability in extraction and recognition of candidate territory without the influence of differences in lighting and input image in various sizes.

Systolic Array Simulator Construction for the Back-propagation ANN (역전파 ANN의 시스톨릭 어레이를 위한 시뮬레이터 개발)

  • 박기현;전상윤
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.117-124
    • /
    • 2000
  • A systolic array is a parallel processing system which consists of processing elements of basic computation capabilities, connected with regular and local communication lines. It has been known that a systolic array is on of effective systems to solve complicated communication problems occurred between densely connected neurons on ANN(Artificial Neural Network). In this paper, a systolic array simulator for the back-propagation ANN, which automatically constructs the proper systolic array for a given number of neurons of the ANN, is designed and constructed. With animation techniques of the simulators, it is easy for users to be able to examine the execution of the back-propagation algorithm on the designed systolic array step by step. Moreover the simulator can perform forward and backward operations of the back-propagation algorithm either in sequence or in parallel on the designed systolic array. Parallel execution can be performed by feeding continuous input patterns and by executing bidirectional propagations on all of processing elements of a systolic array at the same time.

  • PDF

Learning of multi-layer perceptrons with 8-bit data precision (8비트 데이타 정밀도를 가지는 다층퍼셉트론의 역전파 학습 알고리즘)

  • 오상훈;송윤선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.209-216
    • /
    • 1996
  • In this paper, we propose a learning method of multi-layer perceptrons (MLPs) with 8-bit data precision. The suggested method uses the cross-entropy cost function to remove the slope term of error signal in output layer. To decrease the possibility of overflows, we use 16-bit weighted sum results into the 8-bit data with appropriate range. In the forwared propagation, the range for bit-conversion is determined using the saturation property of sigmoid function. In the backwared propagation, the range for bit-conversion is derived using the probability density function of back-propagated signal. In a simulation study to classify hadwritten digits in the CEDAR database, our method shows similar generalization performance to the error back-propagation learning with 16-bit precision.

  • PDF

The Efficient Edge Detection using Genetic Algorithms and Back-Propagation Network (유전자와 역전파 알고리즘을 이용한 효율적인 윤곽선 추출)

  • Park, Chan-Lan;Lee, Woong-Ki
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.3010-3023
    • /
    • 1998
  • GA has a fast convergence speed in searching the one point around optimal value. But it's convergence time increase in searching the region around optimal value because it has no regional searching mechanism. BP has the tendency to converge the local minimum because it has global searching mechanism. To overcome these problems, a method in which a genetic algorithm and a back propagation are applied in turn is proposed in this paper. By using a genetic algorithm, we compute optimal synaptic strength and offset value. And then, these values are fed to the input of the back propagation. This proposed method is superior to each above method in improving the convergence speed.

  • PDF

Classification of Premature Ventricular Contraction using Error Back-Propagation

  • Jeon, Eunkwang;Jung, Bong-Keun;Nam, Yunyoung;Lee, HwaMin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.988-1001
    • /
    • 2018
  • Arrhythmia has recently emerged as one of the major causes of death in Koreans. Premature Ventricular Contraction (PVC) is the most common arrhythmia that can be found in clinical practice, and it may be a precursor to dangerous arrhythmias, such as paroxysmal insomnia, ventricular fibrillation, and coronary artery disease. Therefore, we need for a method that can detect an abnormal heart beat and diagnose arrhythmia early. We extracted the features corresponding to the QRS pattern from the subject's ECG signal and classify the premature ventricular contraction waveform using the features. We modified the weighting and bias values based on the error back-propagation algorithm through learning data. We classify the normal signal and the premature ventricular contraction signal through the modified weights and deflection values. MIT-BIH arrhythmia data sets were used for performance tests. We used RR interval, QS interval, QR amplitude and RS amplitude features. And the hidden layer with two nodes is composed of two layers to form a total three layers (input layer 0, output layer 3).

On the Configuration of initial weight value for the Adaptive back propagation neural network (적응 역 전파 신경회로망의 초기 연철강도 설정에 관한 연구)

  • 홍봉화
    • The Journal of Information Technology
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 2001
  • This paper presents an adaptive back propagation algorithm that update the learning parameter by the generated error, adaptively and configuration of the range for the initial connecting weight according to the different maximum target value from minimum target value. This algorithm is expected to escaping from the local minimum and make the best environment for the convergence. On the simulation tested this algorithm on three learning pattern. The first was 3-parity problem learning, the second was $7{\times}5$ dot alphabetic font learning and the third was handwritten primitive strokes learning. In three examples, the probability of becoming trapped in local minimum was reduce. Furthermore, in the alphabetic font and handwritten primitive strokes learning, the neural network enhanced to loaming efficient about 27%~57.2% for the standard back propagation(SBP).

  • PDF

Application of Back-propagation Algorithm for the forecasting of Temperature and Humidity (온도 및 습도의 단기 예측에 있어서 역전파 알고리즘의 적용)

  • Jeong, Hyo-Joon;Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.271-279
    • /
    • 2003
  • Temperature and humidity forecasting have been performed using artificial neural networks model(ANN). We composed ANN with multi-layer perceptron which is 2 input layers, 2 hidden layers and 1 output layer. Back propagation algorithm was used to train the ANN. 6 nodes and 12 nodes in the middle layers were appropriate to the temperature model for training. And 9 nodes and 6 nodes were also appropriate to the humidity model respectively. 90% of the all data was used learning set, and the extra 10% was used to model verification. In the case of temperature, average temperature before 15 minute and humidity at present constituted input layer, and temperature at present constituted out-layer and humidity model was vice versa. The sensitivity analysis revealed that previous value data contributed to forecasting target value than the other variable. Temperature was pseudo-linearly related to the previous 15 minute average value. We confirmed that ANN with multi-layer perceptron could support pollutant dispersion model by computing meterological data at real time.

Control Method using Neural Network of Hybrid Learning Rule (혼합형 학습규칙 신경 회로망을 이용한 제어 방식)

  • 임중규;이현관;권성훈;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.370-374
    • /
    • 1999
  • The proposed algorithm used the Hybrid teaming rule in the input and hidden layer, and Back-Propagation teaming rule in the hidden and output layer. From the results of simulation of tracking control with one link manipulator as a plant, we verify the usefulness of the proposed control method to compare with common direct adaptive neural network control method; proposed hybrid teaming rule showed faster loaming time faster settling time than the direct adaptive neural network using Back-propagation algorithm. Usefulness of the proposed control method is that it is faster the learning time and settling time than common direct adaptive neural network control method.

  • PDF