• Title/Summary/Keyword: back propagation 신경망 회로

Search Result 99, Processing Time 0.022 seconds

Classification of Gene Data Using Membership Function and Neural Network (소속 함수와 유전자 정보의 신경망을 이용한 유전자 타입의 분류)

  • Yeom, Hae-Young;Kim, Jae-Hyup;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.4 s.304
    • /
    • pp.33-42
    • /
    • 2005
  • This paper proposes a classification method for gene expression data, using membership function and neural network. The gene expression is a process to produce mRNA and protains which generate a living body, and the gene expression data is important to find out the functions and correlations of genes. Such gene expression data can be obtained from DNA 칩 massively and quickly. However, thousands of gene expression data may not be useful until it is well organized. Therefore a classification method is necessary to find the characteristics of gene data acquired from the gene expression. In the proposed method, a set of gene data is extracted according to the fisher's criterion, because we assume that selected gene data is the well-classified data sample. However, the selected gene data does not guarantee well-classified data sample and we calculate feature values using membership function to reduce the influence of outliers in gene data. Feature vectors estimated from the selected feature values are used to train back propagation neural network. The experimental results show that the clustering performance of the proposed method has been improved compared to other existing methods in various gene expression data.

A Study on the PTP Motion of Robot Manipulators by Neural Networks (신경 회로망에 의한 로보트 매니퓰레이터의 PTP 운동에 관한 연구)

  • Kyung, Kye-Hyun;Ko, Myoung-Sam;Lee, Bum-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.679-684
    • /
    • 1989
  • In this paper, we describe the PTP notion of robot manipulators by neural networks. The PTP motion requires the inverse kinematic redline and the joint trajectory generation algorithm. We use the multi-layered Perceptron neural networks and the Error Back Propagation(EBP) learning rule for inverse kinematic problems. Varying the number of hidden layers and the neurons of each hidden layer, we investigate the performance of the neural networks. Increasing the number of learning sweeps, we also discuss the performance of the neural networks. We propose a method for solving the inverse kinematic problems by adding the error compensation neural networks(ECNN). And, we implement the neural networks proposed by Grossberg et al. for automatic trajectory generation and discuss the problems in detail. Applying the neural networks to the current trajectory generation problems, we can refute the computation time for trajectory generation.

  • PDF

The Position Control of Excavator's Attachment using Multi-layer Neural Network (다층 신경 회로망을 이용한 굴삭기의 위치 제어)

  • Seo, Sam-Joon;Kwon, Dai-Ik;Seo, Ho-Joon;Park, Gwi-Tae;Kim, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.705-709
    • /
    • 1995
  • The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it was used as a commanded feedforward input generator. A PD feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the excavator as well as the PD feedback error. By using the BP network as a feedforward controller, no a priori knowledge on system dynamics is need. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbancen and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF

RC Circuit Parameter Estimation for DC Electric Traction Substation Using Linear Artificial Neural Network Scheme (선형인공신경망을 이용한 직류 전철변전소의 RC 회로정수 추정)

  • Bae, Chang Han;Kim, Young Guk;Park, Chan Kyoung;Kim, Yong Ki;Han, Moon Seob
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.314-323
    • /
    • 2016
  • Overhead line voltage of DC railway traction substations has rising or falling characteristics depending on the acceleration and regenerative braking of the subway train loads. The suppression of this irregular fluctuation of the line voltage gives rise to improved energy efficiency of both the railway substation and the trains. This paper presents parameter estimation schemes using the RC circuit model for an overhead line voltage at a 1500V DC electric railway traction substation. A linear artificial neural network with a back-propagation learning algorithm was trained using the measurement data for an overhead line voltage and four feeder currents. The least square estimation method was configured to implement batch processing of these measurement data. These estimation results have been presented and performance analysis has been achieved through raw data simulation.

A Study on Optimal Output Neuron Allocation of LVQ Neural Network using Variance Estimation (분산추정에 의한 LVQ 신경회로망의 최적 출력뉴런 분할에 관한 연구)

  • 정준원;조성원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.239-242
    • /
    • 1996
  • 본 논문에서는 BP(Back Propagation)에 비해서 빠른 학습시간과 다른 경쟁학습 신경회로망 알고리즘에 비해서 비교적 우수한 성능으로 패턴인식 등에 많이 이용되고 있는 LVQ(Learning Vector Quantization) 알고리즘의 성능을 향상시키기 위한 방법을 논의하고자 한다. 일반적으로 LVQ는 음(negative)의 학습을 하기 때문에 초기 가중치가 제대로 설정되지 않으면 발산할 수 있다는 단점이 있으며, 경쟁학습 계열의 신경망이기 때문에 출력 층의 뉴런 수에 따라 성능에 큰 영향을 받는다고 알려져 있다.[1]. 지도학습 형태를 지닌 LVQ의 경우에 학습패턴이 n개의 클래스를 가지고, 각 클래스 별로 학습패턴의 수가 같은 경우에 일반적으로 전체 출력뉴런에 대해서 (출력뉴런수/n)개의 뉴런을 각 클래스의 목표(desired) 클러스터로 할당하여 학습을 수행하는데, 본 논문에서는 각 클래스에 동일한 수의 출력뉴런을 할당하지 않고, 학습데이터에서 각 클래스의 분산을 추정하여 각 클래스의 분산을 추정분산에 비례하게 목표 출력뉴런을 할당하고, 초기 가중치도 추정분산에 비례하게 각 클래스의 초기 임의 위치 입력백터를 사용하여 학습을 수행하는 방법을 제안한다. 본 논문에서 제안하는 방법은 분류하고자 하는 데이터에 대해서 필요한 최적의 출력뉴런 수를 찾는 것이 아니라 이미 결정되어 있는 출력뉴런 수에 대해서 각 클래스에 할당할 출력 뉴런 수를 데이터의 추정분산에 의해서 결정하는 것으로, 추정분산이 크면 상대적으로 많은 출력 뉴런을 할당하고 작으면 상대적으로 적은 출력뉴런을 할당하고 초기 가중치도 마찬가지 방법으로 결정하며, 이렇게 하면 정해진 출력뉴런 개수 안에서 각 클래스 별로 분류의 어려움에 따라서 출력뉴런을 할당하기 때문에 미학습 뉴런이 줄어들게 되어 성능의 향상을 기대할 수 있으며, 실험적으로 제안된 방법이 더 나은 성능을 보임을 확인했다.initially they expected a more practical program about planting than programs that teach community design. Many people are active in their own towns to create better environments and communities. The network system "Alpha Green-Net" is functional to support graduates of the course. In the future these educational programs for citizens will becomes very important. Other cities are starting to have their own progrms, but they are still very short term. "Alpha Green-Net" is in the process of growing. Many members are very keen to develop their own abilities. In the future these NPOs should become independent. To help these NPOs become independent and active the educational programs should consider and teach about how to do this more in the future.단하였는데 그 결과, 좌측 촉각엽에서 제4형의 신경연접이 퇴행성 변화를 나타내었다. 그러므로 촉각의 지각신경세포는 뇌의 같은 족 촉각엽에 뻗어와 제4형 신경연접을 형성한다고 결론되었다.$/ 값이 210 $\mu\textrm{g}$/$m\ell$로서 효과적인 저해 활성을 나타내었다 따라서, 본 연구에서 빈

  • PDF

A Study on the Implementation of Hybrid Learning Rule for Neural Network (다층신경망에서 하이브리드 학습 규칙의 구현에 관한 연구)

  • Song, Do-Sun;Kim, Suk-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.60-68
    • /
    • 1994
  • In this paper we propose a new Hybrid learning rule applied to multilayer feedforward neural networks, which is constructed by combining Hebbian learning rule that is a good feature extractor and Back-Propagation(BP) learning rule that is an excellent classifier. Unlike the BP rule used in multi-layer perceptron(MLP), the proposed Hybrid learning rule is used for uptate of all connection weights except for output connection weigths becase the Hebbian learning in output layer does not guarantee learning convergence. To evaluate the performance, the proposed hybrid rule is applied to classifier problems in two dimensional space and shows better performance than the one applied only by the BP rule. In terms of learning speed the proposed rule converges faster than the conventional BP. For example, the learning of the proposed Hybrid can be done in 2/10 of the iterations that are required for BP, while the recognition rate of the proposed Hybrid is improved by about $0.778\%$ at the peak.

  • PDF

Automatic Interpretation of Epileptogenic Zones in F-18-FDG Brain PET using Artificial Neural Network (인공신경회로망을 이용한 F-18-FDG 뇌 PET의 간질원인병소 자동해석)

  • 이재성;김석기;이명철;박광석;이동수
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.455-468
    • /
    • 1998
  • For the objective interpretation of cerebral metabolic patterns in epilepsy patients, we developed computer-aided classifier using artificial neural network. We studied interictal brain FDG PET scans of 257 epilepsy patients who were diagnosed as normal(n=64), L TLE (n=112), or R TLE (n=81) by visual interpretation. Automatically segmented volume of interest (VOI) was used to reliably extract the features representing patterns of cerebral metabolism. All images were spatially normalized to MNI standard PET template and smoothed with 16mm FWHM Gaussian kernel using SPM96. Mean count in cerebral region was normalized. The VOls for 34 cerebral regions were previously defined on the standard template and 17 different counts of mirrored regions to hemispheric midline were extracted from spatially normalized images. A three-layer feed-forward error back-propagation neural network classifier with 7 input nodes and 3 output nodes was used. The network was trained to interpret metabolic patterns and produce identical diagnoses with those of expert viewers. The performance of the neural network was optimized by testing with 5~40 nodes in hidden layer. Randomly selected 40 images from each group were used to train the network and the remainders were used to test the learned network. The optimized neural network gave a maximum agreement rate of 80.3% with expert viewers. It used 20 hidden nodes and was trained for 1508 epochs. Also, neural network gave agreement rates of 75~80% with 10 or 30 nodes in hidden layer. We conclude that artificial neural network performed as well as human experts and could be potentially useful as clinical decision support tool for the localization of epileptogenic zones.

  • PDF

Design of Neuro-Fuzzy Controller using Relative Gain Matrix (상대 이득 행렬을 이용한 뉴로-퍼지 제어기의 설계)

  • Seo Sam-Jun;Kim Dongwon;Park Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. However, among the input/output variables which arc not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by the introduction of a neuro-fuzzy controller using relative gain matrix. This proposed neuro-fuzzy controller automatically adjusts the mutual coupling weight between variables using a neural network which is realized by back-propagation algorithm. The good performance of the proposed nero-fuzzy controller is verified through computer simulations on 200MW boiler systems.

Face Detection in Color Images Based on Skin Region Segmentation and Neural Network (피부 영역 분할과 신경 회로망에 기반한 칼라 영상에서 얼굴 검출)

  • Lee, Young-Sook;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.1-11
    • /
    • 2006
  • Many research demonstrations and commercial applications have been tried to develop face detection and recognition systems. Human face detection plays an important role in applications such as access control and video surveillance, human computer interface, identity authentication, etc. There are some special problems such as a face connected with background, faces connected via the skin color, and a face divided into several small parts after skin region segmentation in generally. It can be allowed many face detection techniques to solve the first and second problems. However, it is not easy to detect a face divided into several parts of regions for reason of different illumination conditions in the third problem. Therefore, we propose an efficient modified skin segmentation algorithm to solve this problem because the typical region segmentation algorithm can not be used to. Our algorithm detects skin regions over the entire image, and then generates face candidate regions using our skin segmentation algorithm For each face candidate, we implement the procedure of region merging for divided regions in order to make a region using adjacency between homogeneous regions. We utilize various different searching window sizes to detect different size faces and a face detection classifier based on a back-propagation algorithm in order to verify whether the searching window contains a face or not.

  • PDF