• Title/Summary/Keyword: bHLH Transcription Factor

Search Result 17, Processing Time 0.017 seconds

Identification and Characterization of a Putative Basic Helix-Loop-Helix (bHLH) Transcription Factor Interacting with Calcineurin in C. elegans

  • Lee, Soo-Ung;Song, Hyun-Ok;Lee, Wonhae;Singaravelu, Gunasekaran;Yu, Jae-Ran;Park, Woo-Yoon
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.455-461
    • /
    • 2009
  • Calcineurin is a $Ca^{2+}$/Calmodulin activated Ser/Thr phosphatase that is well conserved from yeast to human. It is composed of catalytic subunit A (CnA) and regulatory subunit B (CnB). C. elegans homolog of CnA and CnB has been annotated to tax-6 and cnb-1, respectively and in vivo function of both genes has been intensively studied. In C. elegans, calcineurin play roles in various signaling pathways such as fertility, movement, body size regulation and serotonin-mediated egg laying. In order to understand additional signaling pathway(s) in which calcineurin functions, we screened for binding proteins of TAX-6 and found a novel binding protein, HLH-11. The HLH-11, a member of basic helix-loop-helix (bHLH) proteins, is a putative counterpart of human AP4 transcription factor. Previously bHLH transcription factors have been implicated to regulate many developmental processes such as cell proliferation and differentiation, sex determination and myogenesis. However, the in vivo function of hlh-11 is largely unknown. Here, we show that hlh-11 is expressed in pharynx, intestine, nerve cords, anal depressor and vuvla muscles where calcineurin is also expressed. Mutant analyses reveal that hlh-11 may have role(s) in regulating body size and reproduction. More interestingly, genetic epistasis suggests that hlh-11 may function to regulate serotoninmediated egg laying at the downstream of tax-6.

A Basic Helix-Loop-Helix Transcription Factor Regulates Cell Elongation and Seed Germination

  • Kim, Jin-A;Yun, Ju;Lee, Minsun;Kim, Youn-Sung;Woo, Jae-Chang;Park, Chung-Mo
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.334-341
    • /
    • 2005
  • Plants are sessile and rely on a wide variety of growth hormones to adjust growth and development in response to internal and external stimuli. We have identified a gene, designated NAN, encoding a basic helix-loop-helix (bHLH) transcription factor that regulates cell elongation and seed germination in plants. NAN has an HLH motif in its C-terminal region but does not have any other discernible homologies to bHLH proteins. A bipartite nuclear localization signal is located close to the HLH motif. An Arabidopsis mutant, nan-1D, in which NAN is activated by the insertion of the 35S enhancer, exhibits growth retardation with short hypocotyls and curled leaves. It is also characterized by reduced seed germination and apical hook formation, symptomatic of GA deficiency or disrupted GA signaling. The phenotypic effects of nan-1D were increased by treatment with paclobutrazol (PAC), an inhibitor of gibberellic acid (GA) biosynthesis. NAN is constitutively expressed throughout the life cycle. Our observations indicate that NAN has a housekeeping role in plant growth and development, particularly in seed germination and cell elongation, and that it may modulate GA signaling.

Analysis of Promoter Elements for Transcriptional Expression of Rat p53 Gene in Regenerating Liver

  • Lee, Min-Hyung;Song, Hai-Sun;Park, Sun-Hee;Choi, Jin-Hee;Yu, Sun-Hee;Park, Jong-Sang
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • We previously found three transcription factor-binding motifs in the rat p53 promoter. They are two recognition motifs of NF1-like protein (NF1-like element 1: -296 ~ -312, NF1-like element 2: -195 ~ -219) and a bHLH protein binding element (-142 ~ -146). In this study, we investigated the DNA-protein complex formation of the three elements with nuclear extracts from both normal and regenerating liver to find the element involved in the induced transcription of p53. The level of each DNA-protein complex on NF1-like and bHLH motifs was not changed. Instead, a new element located at -264 ~ -284 was detected in the DNase I footprinting assay with regenerating nuclear extract. This element has partial homology to the AP1 consensus motif. However, the competition studies with diverse oligonucleotides suggest that the binding protein is not AP1. An in vitro transcription assay shows that this element is important for the transcriptional activation of the rat p53 promoter. Therefore, for the induced transcription of the rat p53 promoter, the-264 ~ -284 region is required in addition to two NF1-like and one bHLH motif.

  • PDF

Identification of an Enhancer Critical for the ephirn-A5 Gene Expression in the Posterior Region of the Mesencephalon

  • Park, Eunjeong;Noh, Hyuna;Park, Soochul
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.426-433
    • /
    • 2017
  • Ephrin-A5 has been implicated in the regulation of brain morphogenesis and axon pathfinding. In this study, we used bacterial homologous recombination to express a LacZ reporter in various ephrin-A5 BAC clones to identify elements that regulate ephrin-A5 gene expression during mesencephalon development. We found that there is mesencephalon-specific enhancer activity localized to a specific +25.0 kb to +30.5 kb genomic region in the first intron of ephrin-A5. Further comparative genomic analysis indicated that two evolutionary conserved regions, ECR1 and ECR2, were present within this 5.5 kb region. Deletion of ECR1 from the enhancer resulted in disrupted mesencephalon-specific enhancer activity in transgenic embryos. We also found a consensus binding site for basic helix-loop-helix (bHLH) transcription factors (TFs) in a highly conserved region at the 3'-end of ECR1. We further demonstrated that specific deletion of the bHLH TF binding site abrogated the mesencephalon-specific enhancer activity in transgenic embryos. Finally, both electrophoretic mobility shift assay and luciferase-based transactivation assay revealed that the transcription factor Ascl1 bound the bHLH consensus binding site in the mesencephalon-specific ephrin-A5 enhancer in vitro. Together, these results suggest that the bHLH TF binding site in ECR1 is involved in the positive regulation of ephrin-A5 gene expression during the development of the mesencephalon.

A 100 kDa Protein Binding to bHLH Family Consensus Recognition Sequence of RAT p53 Promoter

  • Lee, Min-Hyung;Park, Sun-Hee;Song, Hai-Sun;Lee, Kyung-Hee;Park, Jong-Sang
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.205-210
    • /
    • 1997
  • p53 tumor suppressor plays an important role in the regulation of cellular proliferation. To identify proteins regulating the expression of p53 in rat liver, we analyzed p53 promoter by electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay. We found that a protein binds the sequence CACGTG, bHLH consensus sequence in rat p53 promoter. Southwestern blotting analysis with oligonucleotides containing this sequence shows that the molecular weight of the protein is 100 kDa. This size is not compatible with the bHLH family such as USF or c-Myc/Max which is known to regulate the expression of the human and mouse p53 gene. Therefore this 100 kDa protein may be a new protein regulating basal transcription of rat p53. We purified this 100 kDa protein through sequence-specific DNA affinity chromatogaphy.

  • PDF

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

Transcription Factor for Gene Function Analysis in Maize (옥수수 유전자 기능 분석을 위한 전사인자의 이해)

  • Moon, Jun-Cheol;Kim, Jae Yoon;Baek, Seong-Bum;Kwon, Young-Up;Song, Kitae;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.263-281
    • /
    • 2014
  • Transcription factors are essential for the regulation of gene expression in plant. They are binding to either enhancer or promoter region of DNA adjacent to the gene and are related to basal transcription regulation, differential enhancement of transcription, development, response to intercellular signals or environment, and cell cycle control. The mechanism in controlling gene expression of transcription can be understood through the assessment of the complete sequence for the maize genome. It is possible that the maize genome encodes 4,000 or more transcription factors because it has undergone whole duplication in the past. Previously, several transcription factors of maize have been characterized. In this review article, the transcription factors were selected using Pfam database, including many family members in comparison with other family and listed as follows: ABI3/VP1, AP2/EREBP, ARF, ARID, AS2, AUX/IAA, BES1, bHLH, bZIP, C2C2-CO-like, C2C2-Dof, C2C2-GATA, C2C2-YABBY, C2H2, E2F/DP, FHA, GARP-ARR-B, GeBP, GRAS, HMG, HSF, MADS, MYB, MYB-related, NAC, PHD, and WRKY family. For analyzing motifs, each amino acid sequence has been aligned with ClustalW and the conserved sequence was shown by sequence logo. This review article will contribute to further study of molecular biological analysis and breeding using the transcription factor of maize as a strategy for selecting target gene.

Determination of the MYB Motif Interacting with WD40 and Basic Helix Loop Helix Proteins

  • Kim, Ji-Hye;Kim, Bong-Gyu;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.67-70
    • /
    • 2012
  • Plant MYB transcription factors regulate secondary metabolism, cellular morphogenesis, and plant hormone signaling pathway. MYB proteins in plants consist of two repeats of 50 amino acid residues, which are referred to as R2R3 and they interact with WD40 or basic helix loop helix (bHLH) proteins. Yeast two hybrid assay was determined whether rice MYB protein interacts with either OsTTG1, which contains a WD40 domain, or with OsGL3, which contains a bHLH domain. Among 30 OsMYB proteins, three interacted with OsTTG1 and five interacted with OsGL3. A series of MYB mutants were created to determine the MYB domain important for the interaction with OsTTG1 or OsGL3. By using the yeast two hybrid assay, we found that the R3 motif of OsMYB10 and the R2 motif of OsMYB16 were required for interaction with OsTTG1 and OsGL3 proteins, respectively.

PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis

  • Choi, Hyunmo;Oh, Eunkyoo
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.587-593
    • /
    • 2016
  • As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth.