DOI QR코드

DOI QR Code

Identification and Characterization of a Putative Basic Helix-Loop-Helix (bHLH) Transcription Factor Interacting with Calcineurin in C. elegans

  • Lee, Soo-Ung (Department of Environmental and Tropical Medicine, Konkuk University School of Medicine) ;
  • Song, Hyun-Ok (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Lee, Wonhae (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Singaravelu, Gunasekaran (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Yu, Jae-Ran (Department of Environmental and Tropical Medicine, Konkuk University School of Medicine) ;
  • Park, Woo-Yoon (Department of Radiation Oncology, College of Medicine, Chungbuk National University)
  • Received : 2009.07.30
  • Accepted : 2009.08.31
  • Published : 2009.11.30

Abstract

Calcineurin is a $Ca^{2+}$/Calmodulin activated Ser/Thr phosphatase that is well conserved from yeast to human. It is composed of catalytic subunit A (CnA) and regulatory subunit B (CnB). C. elegans homolog of CnA and CnB has been annotated to tax-6 and cnb-1, respectively and in vivo function of both genes has been intensively studied. In C. elegans, calcineurin play roles in various signaling pathways such as fertility, movement, body size regulation and serotonin-mediated egg laying. In order to understand additional signaling pathway(s) in which calcineurin functions, we screened for binding proteins of TAX-6 and found a novel binding protein, HLH-11. The HLH-11, a member of basic helix-loop-helix (bHLH) proteins, is a putative counterpart of human AP4 transcription factor. Previously bHLH transcription factors have been implicated to regulate many developmental processes such as cell proliferation and differentiation, sex determination and myogenesis. However, the in vivo function of hlh-11 is largely unknown. Here, we show that hlh-11 is expressed in pharynx, intestine, nerve cords, anal depressor and vuvla muscles where calcineurin is also expressed. Mutant analyses reveal that hlh-11 may have role(s) in regulating body size and reproduction. More interestingly, genetic epistasis suggests that hlh-11 may function to regulate serotoninmediated egg laying at the downstream of tax-6.

Keywords

Acknowledgement

Supported by : Ministry of Education, Science and Technology of Korea

References

  1. Bandyopadhyay, J., Lee, J., Lee, J.I., Yu, J.R., Jee, C., Cho, J.H., Jung, S., Lee, M.H., Zannoni, S., Singson, A., et al. (2002). Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in Caenorhabditis elegans. Mol. Biol. Cell 13, 3281-3293 https://doi.org/10.1091/mbc.E02-01-0005
  2. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94
  3. Chen, L., Krause, M., Draper, B., Weintraub, H., and Fire, A. (1992). Body-wall muscle formation in Caenorhabditis elegans embryos that lack the MyoD homolog hlh-1. Science 256, 240-243 https://doi.org/10.1126/science.1314423
  4. Chen, L., Krause, M., Sepanski, M., and Fire, A. (1994). The Caenorhabditis elegans MYOD homologue HLH-1 is essential for proper muscle function and complete morphogenesis. Development 120, 1631-1641
  5. Ciarapica, R., Rosati, J., Cesareni, G., and Nasi, S. (2003). Molecular recognition in helix-loop-helix and helix-loop-helix-leucine zipper domains. Design of repertoires and selection of high affinity ligands for natural proteins. J. Biol. Chem. 278, 12182-12190 https://doi.org/10.1074/jbc.M211991200
  6. Corsi, A.K., Kostas, S.A., Fire, A., and Krause, M. (2000). Caenorhabditis elegans twist plays an essential role in non-striated muscle development. Development 127, 2041-2051
  7. Corsi, A.K., Brodigan, T.M., Jorgensen, E.M., and Krause, M. (2002). Characterization of a dominant negative C. elegans Twist mutant protein with implications for human Saethre- Chotzen syndrome. Development 129, 2761-2772
  8. Crabtree, G.R. (1999). Generic signals and specific outcomes: signaling through $Ca^{2+}, $, calcineurin, and NF-AT. Cell 96, 611-614 https://doi.org/10.1016/S0092-8674(00)80571-1
  9. Davies, K.J., Ermak, G., Rothermel, B.A., Pritchard, M., Heitman, J., Ahnn, J., Henrique-Silva, F., Crawford, D., Canaider, S., Strippoli, P., et al. (2007). Renaming the DSCR1/Adapt78 gene family as RCAN: regulators of calcineurin. FASEB J. 21, 3023-3028 https://doi.org/10.1096/fj.06-7246com
  10. Fukushige, T., and Krause, M. (2005). The myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos. Development 132, 1795-1805 https://doi.org/10.1242/dev.01774
  11. Gort, E.H., van Haaften, G., Verlaan, I., Groot, A.J., Plasterk, R.H., Shvarts, A., Suijkerbuijk, K.P., van Laar, T., van der Wall, E., Raman, V., et al. (2008). The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. Oncogene 27, 1501-1510 https://doi.org/10.1038/sj.onc.1210795
  12. Hallam, S., Singer, E., Waring, D., and Jin, Y. (2000). The C. elegans NeuroD homolog cnd-1 f u nctions in m u ltiple a spects o f motor neuron fate specification. Development 127, 4239-4252
  13. Harfe, B.D., Branda, C.S., Krause, M., Stern, M.J., and Fire, A. (1998a). MyoD and the specification of muscle and non-muscle fates during postembryonic development of the C. elegans mesoderm. Development 125, 2479-2488
  14. Harfe, B.D., Vaz Gomes, A., Kenyon, C., Liu, J., Krause, M., and Fire, A. (1998b). Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes Dev. 12, 2623-2635 https://doi.org/10.1101/gad.12.16.2623
  15. Hashimoto, Y., Perrino, B.A., and Soderling, T.R. (1990). Identification of an autoinhibitory domain in calcineurin. J. Biol. Chem. 265, 1924-1927
  16. Hubbard, M.J., and Klee, C.B. (1989). Functional domain structure of calcineurin A: mapping by limited proteolysis. Biochemistry 28, 1868-1874 https://doi.org/10.1021/bi00430a066
  17. Im, S.H., and Rao, A. (2004). Activation and deactivation of gene expression by $Ca^{2+}, $/calcineurin-NFAT-mediated signaling. Mol. Cells 18, 1-9
  18. Jan, Y.N., and Jan, L.Y. (1993). HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75, 827-830 https://doi.org/10.1016/0092-8674(93)90525-U
  19. Karp, X., and Greenwald, I. (2003). Post-transcriptional regulation of the E/Daughterless ortholog HLH-2, negative feedback, and birth order bias during the AC/VU decision in C. elegans. Genes Dev. 17, 3100-3111 https://doi.org/10.1101/gad.1160803
  20. Karp, X., and Greenwald, I. (2004). Multiple roles for the E/Daughterless ortholog HLH-2 during C. elegans gonadogenesis. Dev. Biol. 272, 460-469 https://doi.org/10.1016/j.ydbio.2004.05.015
  21. Kim, Y.H., Song, H.O., Ko, K.M., Singaravelu, G., Jee, C., Kang, J., and Ahnn, J. (2008). A novel calcineurin-interacting protein, CNP-3, modulates calcineurin deficient phenotypes in Caenorhabditis elegans. Mol. Cells 25, 566-571
  22. Klee, C.B., Crouch, T.H., and Krinks, M.H. (1979). Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc. Natl. Acad. Sci. USA 76, 6270-6273 https://doi.org/10.1073/pnas.76.12.6270
  23. Klee, C.B., Ren, H., and Wang, X. (1998). Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273, 13367-13370 https://doi.org/10.1074/jbc.273.22.13367
  24. Krause, M., Harrison, S.W., Xu, S.Q., Chen, L., and Fire, A. (1994). Elements regulating cell- and stage-specific expression of the C. elegans MyoD family homolog hlh-1. Dev. Biol. 166, 133-148 https://doi.org/10.1006/dbio.1994.1302
  25. Krause, M., Park, M., Zhang, J.M., Yuan, J., Harfe, B., Xu, S.Q., Greenwald, I., Cole, M., Paterson, B., and Fire, A. (1997). A C. elegans E/Daughterless bHLH protein marks neuronal but not striated muscle development. Development 124, 2179-2189
  26. Kuhara, A., Inada, H., Katsura, I., and Mori, I. (2002). Negative regulation and gain control of sensory neurons by the C. elegans calcineurin TAX-6. Neuron 33, 751-763 https://doi.org/10.1016/S0896-6273(02)00607-4
  27. Ledent, V., and Vervoort, M. (2001). The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res. 11, 754-770 https://doi.org/10.1101/gr.177001
  28. Ledent, V., Paquet, O., and Vervoort, M. (2002). Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol. 3, RESEARCH0030
  29. Lee, J., Jee, C., Song, H.O., Bandyopadhyay, J., Lee, J.I., Yu, J.R., Park, B.J., and Ahnn, J. (2004). Opposing functions of calcineurin and CaMKII regulate G-protein signaling in egg-laying behavior of C. elegans. J. Mol. Biol. 344, 585-595 https://doi.org/10.1016/j.jmb.2004.09.050
  30. Lee, J., Song, H.O., Jee, C., Vanoaica, L., and Ahnn, J. (2005). Calcineurin regulates enteric muscle contraction through EXP-1, excitatory GABA-gated channel, in C. elegans. J. Mol. Biol. 352, 313-318 https://doi.org/10.1016/j.jmb.2005.07.032
  31. Massari, M.E., and Murre, C. (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429-440 https://doi.org/10.1128/MCB.20.2.429-440.2000
  32. Mello, C., and Fire, A. (1995). DNA transformation. Methods Cell Biol. 48, 451-482 https://doi.org/10.1016/S0091-679X(08)61399-0
  33. Mulkey, R.M., Endo, S., Shenolikar, S., and Malenka, R.C. (1994). Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486-488 https://doi.org/10.1038/369486a0
  34. Murre, C., Bain, G., van Dijk, M.A., Engel, I., Furnari, B.A., Massari, M.E., Matthews, J.R., Quong, M.W., Rivera, R.R., and Stuiver, M.H. (1994). Structure and function of helix-loop-helix proteins. Biochim. Biophys. Acta 1218, 129-135 https://doi.org/10.1016/0167-4781(94)90001-9
  35. Park, B.J., Lee, J., Lee, J., Kim, S., Choi, K., Park, C.S., and Ahnn, J. (2000). Isolation of deletion mutants by reverse genetics in Caenorhabditis elegans. Korean J. Biol. Sci. 5, 5
  36. Portman, D.S., and Emmons, S.W. (2000). The basic helix-loophelix transcription factors LIN-32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development 127, 5415-5426
  37. Schulz, R.A., and Yutzey, K.E. (2004). Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev. Biol. 266, 1-16 https://doi.org/10.1016/j.ydbio.2003.10.008
  38. Singaravelu, G., Song, H.O., Ji, Y.J., Jee, C., Park, B.J., and Ahnn, J. (2007). Calcineurin interacts with KIN-29, a Ser/Thr kinase, in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 352, 29-35 https://doi.org/10.1016/j.bbrc.2006.10.120
  39. Solari, F., Bateman, A., and Ahringer, J. (1999). The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development 126, 2483-2494
  40. Stewart, A.A., Ingebritsen, T.S., Manalan, A., Klee, C.B., and Cohen, P. (1982). Discovery of a $Ca^{2+} $- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett. 137, 80-84 https://doi.org/10.1016/0014-5793(82)80319-0
  41. Thellmann, M., Hatzold, J., and Conradt, B. (2003). The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 130, 4057-4071 https://doi.org/10.1242/dev.00597
  42. Trent, C., Tsuing, N., and Horvitz, H.R. (1983). Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104, 619-647
  43. Wang, D., Claus, C.L., Vaccarelli, G., Braunstein, M., Schmitt, T.M., Zuniga-Pflucker, J.C., Rothenberg, E.V., and Anderson, M.K. (2006). The basic helix-loop-helix transcription factor HEBAlt is expressed in pro-T cells and enhances the generation of T cell precursors. J. Immunol. 177, 109-119 https://doi.org/10.4049/jimmunol.177.1.109
  44. Zhang, J.M., Chen, L., Krause, M., Fire, A., and Paterson, B.M. (1999). Evolutionary conservation of MyoD function and differential utilization of E proteins. Dev. Biol. 208, 465-472 https://doi.org/10.1006/dbio.1999.9218
  45. Zhao, J., Wang, P., and Corsi, A.K. (2007). The C. elegans Twist target gene, arg-1, is regulated by distinct E box promoter elements. Mech. Dev. 124, 377-389 https://doi.org/10.1016/j.mod.2007.01.005

Cited by

  1. The overexpression of AP-4 as a prognostic indicator for gastric carcinoma vol.29, pp.2, 2009, https://doi.org/10.1007/s12032-011-9845-8
  2. Down-Regulation of AP-4 Inhibits Proliferation, Induces Cell Cycle Arrest and Promotes Apoptosis in Human Gastric Cancer Cells vol.7, pp.5, 2009, https://doi.org/10.1371/journal.pone.0037096
  3. The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging vol.38, pp.2, 2009, https://doi.org/10.1007/s12038-013-9319-6
  4. AP-4 predicts poor prognosis in non-small cell lung cancer vol.10, pp.1, 2014, https://doi.org/10.3892/mmr.2014.2209
  5. Silencing of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human lung cancer cells vol.11, pp.6, 2009, https://doi.org/10.3892/ol.2016.4451
  6. Overexpression of transcription factor activating enhancer binding protein 4 (TFAP4) predicts poor prognosis for colorectal cancer patients vol.14, pp.4, 2009, https://doi.org/10.3892/etm.2017.4875
  7. A feedback loop governs the relationship between lipid metabolism and longevity vol.9, pp.None, 2009, https://doi.org/10.7554/elife.58815