• Title/Summary/Keyword: axisymmetric

검색결과 1,275건 처리시간 0.03초

축대칭 하향단흐름에서 자유흐름 난류강도의 영향 (Effects of the free Stream Turbulence Intensity on the Flow Over an Axisymmetric Backward-Facing Step)

  • 양종필;김경천;부정숙
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2328-2341
    • /
    • 1995
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purposes of the present study are to investigate the effect of the free stream turbulence intensity on the reattachment length and to understand the turbulence structure of the recirculating flows. Local mean and fluctuating velocity components were measured in the separated and reattaching axisymmetric turbulent boundary layer over the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. As the free stream turbulence intensity increased, the reattachment length became shorter due to the enhanced mixing in the separated shear layer. It was also observed that the reverse flow velocity and turbulent kinetic energy increase with increasing free stream turbulence intensity. Spectral data and flow visualization showed that low-frequency motions occur in the separated flow behind a backward-facing step. These motions have a significant effect on the time-averaged turbulence data.

숯계산에 의한 초음속 제트의 스크리티 톤 소음 해석 (Numerical Analysis on Screech Tone in a Supersonic Jet)

  • 김용석;이덕주
    • 한국항공우주학회지
    • /
    • 제35권2호
    • /
    • pp.94-100
    • /
    • 2007
  • 초음속 제트 마하수 1.07부터 1.2 범위에서 축대칭 제트 스크리치 톤을 해석하였다. 축대칭 모드는 낮은 마하수 축대칭 제트의 지배적인 스크리치 톤 모드이다. 난류 해석을 위해 수정된 Spalart-Allmaras 모델을 RANS (Reynolds-averaged Navier-Stokes) 방정식에 사용하였다. 스크리치 톤 해석에서 중요한 음파의 전파, shock-cell 구조 및 거대한 불안정 파를 정확히 계산하기 위해 비반사 특성 경계조건과 연계한 고차정확도의 ENO 기법을 사용하였다. 수치 해석결과는 다른 연구자들의 실험 및 계산 결과와 잘 일치하였으며, 따라서 본 연구에 사용된 수치 기법들이 초음속 제트 유동 및 소음연구에 타당함을 확인하였다.

선배열 예인 음탐기의 음향 모듈을 따라 전파하는 축대칭 진동에 기인한 음향 센서 자체 소음 해석 (Self Noise Analysis of Towed Array Sonar Induced by Axisymmetric Vibrations Propagating Along Fluid-filled Elastic Hoses)

  • 유정수;신현경;안형택;권오조
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.437-446
    • /
    • 2011
  • Performance of array sonars towed underwater is limited due to the self-noise induced mainly by the strumming vibration of the towing cable and also turbulent flow around the acoustic sensor module. The vibration of the towing cable generates axisymmetric waves that propagate along the acoustic module of the array sonar and produce self-noise. The present study aims to investigate the characteristics of the self-noise induced by the axisymmetric vibrations of the acoustic module. The waves of interest are the bulge and extensional waves propagating along the fluid-filled elastic hose. Dispersion relations of these waves are predicted by means of the numerical simulation to evaluate the wave speeds. The self-noise induced by the axisymmetric waves are formulated taking into account the damping of the elastic hose and the effect of the damping is investigated.

헬리컬 기본교란과 축대칭 분수조화교란을 이용한 원형제트에서의 보텍스 병합 및 제트확산 (Vortex Pairing and Jet-Spreading in an Axisymmetric Jet under Helical Fundamental and Axisymmetric Subharmonic Forcing)

  • 조성권;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1610-1624
    • /
    • 1998
  • An axisymmetric jet is forced with two helical fundamental waves of identical frequency spinning in opposite directions and an additional axisymmetric sub harmonic wave. The subharmonic component rapidly grows downstream from subharmonic resonance with the fundamental, significantly depending on the initial phase difference. The variations of the subharmonic amplitude with the initial phase difference show cusp-like shapes. The amplification of the sub harmonic results in 'vortex pairing of helical modes'. Furthermore, azimuthal variation of the amplification induces an asymmetric jet cross-section. When the initial subharmonics is imposed with an initial phase difference close to a critical value, the jet-cross section evolves into a three-lobed shape. One lobe is generated by the enhanced vortex pairing and the other two lobes are generated by the delayed vortex pairing. Thus, it is confirmed that the initial phase difference between the fundamental and the subharmonic plays an important role in controlling the jet cross-section.

플래시 없는 비축대칭 단조에 관한 연구 (A Study on Flashless Non-Axisymmetric Forging)

  • 배원병;김영호;최재찬;이종헌;김동영
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.42-52
    • /
    • 1995
  • An UBET(Upper Bound Elemental Techniquel) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless non-axisymmetric forging. To analyze the process easily, it is suggested that the deforma- tion is divided into two different parts. Those are axisymmetric part in corner and plane- strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, form which the upper-bound forging load, the flow pattern, the grid pattern, the velocity distribution and the effective strain are deter- mined. To show the merit of flashless forging, the results of flashless and flash-forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

국소 가열 방법을 이용한 2단계 축대칭 디프 드로잉 공정의 해석 및 설계 (Finite Element Analysis Design of Axisymmetric Deep Drawing Process by Local Heating)

  • 이동우;송인섭;양동열
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.198-204
    • /
    • 1993
  • The study is concerned with finite element analysis and design of axisymmetric deep drawing by local heating. When the bottom shape of a cup is not flat but in complex-shaped, i.e., hemispherical, the cup cannot be drawn in one or two processes in the conventional deep drawing process and the limit drawing ratio is limited as well. By introducing local heating selectively with regards to the heating position, the formability of the sheet metal can be greatly increased with the reduced number of processes. In the Process analysisthe rigid- viscoplastic finite element method is employed and the temperature effect is incorporated. Bishop's step-wise decoupled method is employed to analyze the thermomechanical interaction between deformation and heat transfer. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed for various combinations of heat application in the punch and the die. At the first stage of deep drawing stretch forming is practically carried out by firmly pressing the blankholder with the punch and the die heated at various levels of temperature. Then at the second stage the same cup is drawn for the saame or different combination of temperature. From the computation, it has thus been shown that the fromability of a cup is greatly increased in two-stage deep drawing with increased limet drawing ratio.

  • PDF

축대칭 3차원 물체의 유동 소음 스펙트럼 측정 (A measurement of flow noise spectrum of an axisymmetric body)

  • 박연규;김양한
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.725-733
    • /
    • 1998
  • The pressure fluctuation on the surface of a submerged body has been recognized as a dominant noise source. There have been many studies concerning the flow induced noise on a flat plate. However, the noise over an axisymmetric body has not been well reported. This paper addresses the way in which we have investigated the mechanism of noise generation due to an axisymmetric body. The associated experiments and signal processing methods are introduced. A 3-dimensional axisymmetric body whose length and diameter were 2 m and 10.4 cm, was prepared as a test specimen. The wall pressure on the surface of the body was measured in a large scale low noise wind tunnel at KIMM(Korea Institute of Machinery and Metals). To measure the wall pressure, we used two microphone arrays which were tangential and normal to the flow. Based on the measured signal, frequency-wavenumber spectrum which explains the structure of turbulence noise, was estimated. Tangential to the flow, there exists convective ridge at a relatively higher wavenumber region; this can cause spatial aliasing. To circumvent this problem, the cross spectrum was interpolated. The interpolation has been performed by unwrapping the phase and smoothing the cross spectrum. The phase unwrapping was done based on the Corcos model; the phase of cross spectrum decreases linearly with the distance between microphones. Aforementioned signal processings are possible by employing the experimental results that the estimated wavenumber spectrum quite resembles the Corcos model. We try to modify the Corcos model which is applicable to the flat plate, by altering the magnitude of cross spectrum to fit the experimental data more accurately. We proposed that this wavenumber spectrum model is suitable for the 3-dimensional axisymmetric body. Normal to the flow, there exists a little correlation between signals of different microphones. The circumferential wavenumber spectrum contains uniform power along the wavenumbers.

Axisymmetric Swirling Flow Simulation of the Draft Tube Vortex in Francis Turbines at Partial Discharge

  • Susan-Resiga, Romeo;Muntean, Sebastian;Stein, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.295-302
    • /
    • 2009
  • The flow in the draft tube cone of Francis turbines operated at partial discharge is a complex hydrodynamic phenomenon where an incoming steady axisymmetric swirling flow evolves into a three-dimensional unsteady flow field with precessing helical vortex (also called vortex rope) and associated pressure fluctuations. The paper addresses the following fundamental question: is it possible to compute the circumferentially averaged flow field induced by the precessing vortex rope by using an axisymmetric turbulent swirling flow model? In other words, instead of averaging the measured or computed 3D velocity and pressure fields we would like to solve directly the circumferentially averaged governing equations. As a result, one could use a 2D axi-symmetric model instead of the full 3D flow simulation, with huge savings in both computing time and resources. In order to answer this question we first compute the axisymmetric turbulent swirling flow using available solvers by introducing a stagnant region model (SRM), essentially enforcing a unidirectional circumferentially averaged meridian flow as suggested by the experimental data. Numerical results obtained with both models are compared against measured axial and circumferential velocity profiles, as well as for the vortex rope location. Although the circumferentially averaged flow field cannot capture the unsteadiness of the 3D flow, it can be reliably used for further stability analysis, as well as for assessing and optimizing various techniques to stabilize the swirling flow. In particular, the methodology presented and validated in this paper is particularly useful in optimizing the blade design in order to reduce the stagnant region extent, thus mitigating the vortex rope and expending the operating range for Francis turbines.

축대칭 몰수체의 유효반류 추정 (Prediction of the Effective Wake of an Axisymmetric Body)

  • 김기섭;문일성;안종우;김건도;박영하;이창섭
    • 대한조선학회논문집
    • /
    • 제56권5호
    • /
    • pp.410-417
    • /
    • 2019
  • An axisymmetric submerged body(L=5.6m, Diam=0.53m) is installed in Large Cavitation Tunnel (LCT) of KRISO and the nominal and total velocities without and with the propeller in operation, respectively, are measured using Laser Doppler Velocimeter (LDV). The flow field is nearly axisymmetric except the wake of the supporting strut, and is considered ideal to study the hydrodynamic interaction between the propeller and the oncoming axisymmetric sheared flow. The measured velocity data are then provided to compute the propeller-induced velocity to get the effective velocity, which is defined by subtracting the propeller-induced velocity from the total velocity. We adopted, in computing the induced velocity, two different methods including the vortex lattice method and the vortex tube actuator model to evaluate the resultant effective velocity distribution. To secure a fundamental base of experimental data necessary for the research on the effective wake, we measured the drag of the submerged body, the nominal and total velocity distributions at various axial locations for three different tunnel water speeds.

유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석 (Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method)

  • 양동열;김한경;이항수;김경웅
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.873-882
    • /
    • 1992
  • 본 연구에서는 축대칭 형상의 하이드로 미케니칼 디프드로잉 공정을 강소성 유한요소법으로 해석하는 것이다. 본 논문에서는 Fig.1에서 보이는 바와 같은 경우 에 대하여 평두 펀치(flat headed punch)를 사용한 공정을 강소성 유한요소법으로 해 석하였으며 펀치 행정에 따른 챔버내의 압력 및 플랜지부의 압력분포를 구하였다. 접촉부의 처리는 플랜지부의 압력분포를 구하였다. 접촉부의 처리는 Yang등이 제안 한 방법을 적용하였다. 이론해석의 타당성을 알아보기 위하여 금형을 설계, 제작하 고 실험을 수행하여 결과를 비교 검토하였다.