• Title/Summary/Keyword: axis and line screws

Search Result 5, Processing Time 0.02 seconds

Geometrical Velocity and Force Analyses on Planar Serial Mechanisms (평면 직렬 메커니즘의 기하학적 속도 및 힘 해석)

  • Lee, Chan;Lee, Jeh Won;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.648-653
    • /
    • 2015
  • The kinematics with the instantaneous motion and statics of a manipulator has generally been proven algebraically. The algebraic solutions give very simple and straightforward results but the solutions do not have any meaning in physics or geometry. Therefore it is not easy to extend the algebraic results to design or control a robotic manipulator efficiently. Recently, geometrical approach to define the instantaneous motion or static relation of a manipulator is popularly researched and the results have very strong advantages to have a physical insight in the solution. In this paper, the instantaneous motion and static relation of a planar manipulator are described by geometrical approach, specifically by an axis screw and a line screw. The mass center of a triangle with weight and a perpendicular distance between the two screws are useful geometric measures for geometric analysis. This study provides a geometric interpretation of the kinematics and statics of a planar manipulator, and the method can be applied to design or control procedure from the geometric information in the equations.

Stiffness Analysis of a Low-DOE Parallel Manipulator using the Theory of Reciprocal Screws (역나선 이론을 이용한 저자유도 병렬형 기구의 강성해석)

  • Kim Han Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.680-688
    • /
    • 2005
  • This paper presents a methodology for the stiffness analysis of a low-DOF parallel manipulator. A low-DOF parallel manipulator is a spatial parallel manipulator which has less than six degrees of freedom. The reciprocal screws of actuations and constraints in each leg can be determined by making use of the theory of reciprocal screws, which provide information about reaction forces due to actuations and constraints. When pure farce is applied to a leg, the leg stiffness is modeled as a linear spring along the line. For pure couple, it is modeled as a rotational spring about the axis. It is shown that the stiffness model of an it_DOF parallel nipulator consists of F springs related to actuations and 6-F springs related to constraints connected from the moving platform to the base in parallel. The 6x f Cartesian stiffness matrix is derived, which is the sum of the Cartesian stiffness matrices of actuations and constraints. Finally, the 3-UPU, 3-PRRR, and Tricept parallel manipulators are used as examples to demonstrate the methodology.

Stiffness Analysis of a Low-DOF Parallel Manipulator using the Theory of Reciprocal Screws (역나선 이론을 이용한 저자유도 평행구조 기구의 강성해석)

  • Kim, Han-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.573-578
    • /
    • 2004
  • This paper presents a methodology for the stiffness analysis of a low-DOF parallel manipulator. A low-DOF parallel manipulator is a spatial parallel manipulator which has less than six degrees of freedom. The reciprocal screws of actuations and constraints in each leg can be determined by making use of the theory of reciprocal screws, which provide information about reaction forces due to actuations and constraints. When pure force is applied to a leg, the leg stiffness is modeled as a linear spring along the line. For pure couple, it is modeled as a rotational spring about the axis. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to actuations and 6-F springs related to constraints connected from the moving platform to the base in parallel. The $6{\times}6$ Cartesian stiffness matrix is obtained, which is the sum of the Cartesian stiffness matrices of actuations and constraints. Finally, a 3-UPU parallel manipulator is used as an example to demonstrate the methodology.

  • PDF

Stability of implant screw joint (임플란트 나사의 안정성)

  • Chung, Chae-Heon;Kwak, Jong-Ha;Jang, Doo-IK
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • The use of screw-retaind prosthesis on an osseointegrated implant is a popular treatment modality offering relative ease in the removal of the restoration. One of the complications associated with this modality is the loosening of the abutment and coping screws. Loosening of the screws results in patient dissatisfaction, frustration to the dentist and, if left untreated, component fracture. There are several factors which contribute to the loosening of implant components which can be controlled by the restorative dentist and lab technician. This article offers pratical solutions to minimize this clinical problem and describes the factors involved in maintaining a stable screw joint assembly. To avoid joint failure, adherence to specific clinical, as well as mechanical, parameters is critical. With respect to hardware, optimal tolerance and fit, minimal rotational play, best physical properties, a predictable interface, and optimal torque application are mandatory. In the clinical arena, optimal implant distribution; load in line with implant axis; optimal number, diameter, and length of implants; elimination of cantilevers; optimal prosthesis fit; and occlusal load control are equally important.

Palatal en-masse retraction of segmented maxillary anterior teeth: A finite element study

  • Park, Jae Hyun;Kook, Yoon-Ah;Kojima, Yukio;Yun, Sunock;Chae, Jong-Moon
    • The korean journal of orthodontics
    • /
    • v.49 no.3
    • /
    • pp.188-193
    • /
    • 2019
  • Objective: The aim of this finite element study was to clarify the mechanics of tooth movement in palatal en-masse retraction of segmented maxillary anterior teeth by using anchor screws and lever arms. Methods: A three-dimensional finite element method was used to simulate overall orthodontic tooth movements. The line of action of the force was varied by changing both the lever arm height and anchor screw position. Results: When the line of action of the force passed through the center of resistance (CR), the anterior teeth showed translation. However, when the line of action was not perpendicular to the long axis of the anterior teeth, the anterior teeth moved bodily with an unexpected intrusion even though the force was transmitted horizontally. To move the anterior teeth bodily without intrusion and extrusion, a downward force passing through the CR was necessary. When the line of action of the force passed apical to the CR, the anterior teeth tipped counterclockwise during retraction, and when the line of action of the force passed coronal to the CR, the anterior teeth tipped clockwise during retraction. Conclusions: The movement pattern of the anterior teeth changed depending on the combination of lever arm height and anchor screw position. However, this pattern may be unpredictable in clinical settings because the movement direction is not always equal to the force direction.