• Title/Summary/Keyword: axial equilibrium

Search Result 134, Processing Time 0.022 seconds

Non-Linear dynamic pulse buckling of laminated composite curved panels

  • Keshav, Vasanth;Patel, Shuvendu N.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.181-190
    • /
    • 2020
  • In this paper, non-linear dynamic buckling behaviour of laminated composite curved panels subjected to dynamic in-plane axial compressive loads is studied using finite element methods. The work is carried out using the finite element software ABAQUS. The curved panels are modelled with S4R element and the nonlinear dynamic equilibrium equations are solved using the ABAQUS/Explicit algorithm. The effect of aspect ratio, radius of curvature and thickness are studied. The importance of orientation of plies in the direction of loading is also reiterated in this study. Vol'mir's criterion is used to calculate the dynamic buckling loads. The panels are subjected to rectangular pulse load of various amplitude and durations and the responses are observed. For particular loading amplitude, a critical value of loading duration is observed beyond which the variation of dynamic buckling load is insignificant. It is also observed that, the value of dynamic bucking load reduces as the loading duration is increased though the reduction is not much after a particular loading duration.

Finite Element Simulation of Axisymmeric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • 김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 2002
  • Recently, the hydroforming process is widely applied to the automotive industry and rapidly spreaded to other industries. In this paper, An implicit finite element formulation for simulating axisymmetric tube hydroforming processes is performed. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and the frictionless contact between tube and fluid are considered using the mesh-normal vectors computed from the finite element mesh of the tube. The complete set of the governing relations comprising equilibrium and interfacial equations is linearized for Newton-Raphson procedure. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and the simulation results are compared with experimental measurements. In a simulation of stepped circular tube hydroforming processes, an optimal hydraulic pressure curve is pursued by considering simultaneously internal pressures and axial forces.

Numerical Simulation of NO Emission and Combustion Characteristics in Furnace (연소로에서 NO 배출 및 연소특성에 대한 수치해석적 연구)

  • 전영남
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.5
    • /
    • pp.577-585
    • /
    • 1996
  • A screening study was performed in order to resolve the flow, combustion and emission characteristics of the gas furmace with co-axial diffusion flane burner. A control-valume based finite-difference method with the power-law scheme was employed for discretization. Numerical procedure for the differential equation was used by SIMPLEST to enclosute rapid converge. A k-.varepsilon. model was incorporated for the closure of turbulence. The mass fraction and mixture fraction were calculated by cinserved scalar method. An equilibrium analysis was employed to determine the concentration of radicals in the product stream and conserbation equations were them solved for N amd NO by Zelovich reaction scheme. The method was exercised in a simple one-dimensional case first, to determine the effects of air ratio, temperature and residence time on NO formation and applied to a furnace with co-axial diffusion flame burner.

  • PDF

Development of Axial Compressor Design and Performance/Flow Analysis Program (축류 압축기 설계 및 성능/유동 해석 프로그램 개발)

  • Yoon, S.H.;Lee, K.Y.;Park, J.Y.;Park, T.J.;Choi, M.S.;Baek, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.658-663
    • /
    • 2001
  • In this study, the axial-compressor design and performance/flow analysis program is developed. A mean-line analysis was used to determine optimum arrangement of overall geometry and its off-design performance is predicted by stage-stacking method. Three dimensional blade shape is generated using radial equilibrium equation and vortex methods. Various blade shape is generated and their performance is compared. Finally the quasi-three dimensional flow analysis is applied to investigate the detailed flow phenomena.

  • PDF

Buckling of plates including effect of shear deformations: a hyperelastic formulation

  • Musa, Idris A.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1107-1124
    • /
    • 2016
  • Consistent finite strain Plate constitutive relations are derived based on a hyperelastic formulation for an isotropic material. Plate equilibrium equations under finite strain are derived following a static kinematic approach. Three Euler angles and four shear angles, based on Timoshenko beam theory, represent the kinematics of the deformations in the plate cross section. The Green deformation tensor has been expressed in term of a deformation tensor associated with the deformation and stretches of an embedded plate element. Buckling formulation includes the in-plane axial deformation prior to buckling and transverse as well as in-plane shear deformations. Numerical results for a simply supported thick plate under uni-axial compression force are presented.

A curvature method for beam-column with different materials and arbitrary cross-section shapes

  • Song, Xiaobin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.147-161
    • /
    • 2012
  • This paper presents a curvature method for analysis of beam-columns with different materials and arbitrary cross-section shapes and subjected to combined biaxial moments and axial load. Both material and geometric nonlinearities (the p-delta effect in this case) were incorporated. The proposed method considers biaxial curvatures and uniform normal strains of discrete cross-sections of beam-columns as basic unknowns, and seeks for a solution of the column deflection curve that satisfies force equilibrium conditions. A piecewise representation of the beam-column deflection curve is constructed based on the curvatures and angles of rotation of the segmented cross-sections. The resulting bending moments were evaluated based on the deformed column shape and the axial load. The moment curvature relationship and the beam-column deflection calculation are presented in matrix form and the Newton-Raphson method is employed to ensure fast and stable convergence. Comparison with results of analytic solutions and eccentric compression tests of wood beam-columns implies that this method is reliable and effective for beam-columns subjected to eccentric compression load, lateral bracings and complex boundary conditions.

Nonlinear Behavior of RC Columns Subjected to Cyclic Loadings (반복하중을 받는 철근콘크리트 기둥의 비선형 거동)

  • 곽효경;김선필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.475-482
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment4curvature models and the layered section approach, the proposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching effect caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial lone. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. Finally, correlation studies between analytical result and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Nonlinear Analysis of RC Columns under Cyclic Loading Based on Moment-Curvature Relationship (반복하중을 받는 RC기둥의 비선형 해석을 위한 모멘트-곡률 관계의 개발)

  • 곽효경;김선필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.3-11
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the unposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching enact caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial force. The advantages of the proposed model, comparing tn layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures.. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed mood.

  • PDF

Excitation Temperature and Electron Number Density Measured for End-On-View Indectively Coupled Plasma Discharge

  • Nam, Sang Ho;Kim, Yeong Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.827-832
    • /
    • 2001
  • The excitation temperature and electron number density have been measured for end-on-view ICP discharge. In this work, end-on-view ICP-AES equipped with the newly developed “optical plasma interface (OPI)” was used to eliminate or remove the neg ative effects caused by end-on-plasma source. The axial excitation temperature was measured using analyte (Fe I) emission line data obtained with end-on-view ICP-AES. The axial electron number density was calculated by Saha-Eggert ionization equilibrium theory. In the present study, the effects of forward power, nebulizer gas flow rate and the presence of Na on the excitation temperature and electron number density have been investigated. For sample introduction, two kinds of nebulizers (pneumatic and ultrasonic nebulizer) were utilized.

An algorithm for simulation of cyclic eccentrically-loaded RC columns using fixed rectangular finite elements discretization

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2019
  • In this paper, an algorithm is presented to simulate numerically the reinforced concrete (RC) columns having any geometric form of section, loaded eccentrically along one or two axes. To apply the algorithm, the columns are discretized into two macro-elements (MEs) globally and the critical sections of columns are discretized into fixed rectangular finite elements locally. A proposed triple simultaneous dichotomy convergence method is applied to find the equilibrium state in the critical section of the column considering the three strains at three corners of the critical section as the main characteristic variables. Based on the proposed algorithm a computer program has been developed for simulation of the nonlinear behavior of the eccentrically-loaded columns. A good agreement has been witnessed between the results obtained applying the proposed algorithm and the experimental test results. The simulated results indicate that the ultimate strength and stiffness of the RC columns increase with the increase in axial force value, but large axial loads reduce the ductility of the column, make it brittle, impose great loss of material, and cause early failure.