목 적: 현재 본원에서 방광암 환자의 영상유도 방사선치료는 재현성을 높이기 위하여 환자의 상태에 따라 알맞은 양의 생리식염수를 주입하고 영상유도 시스템(On-Board Imager system, OBI, VARIAN, USA)의 Cone.Beam CT (CBCT)로 3차원 정합(3D-3D matching)을 하여 치료를 한다. 본 연구에서는 방광암 환자의 치료 시 획득한 CBCT 영상의 분석을 통해 뼈를 기준으로 한 정합과 방광을 기준으로 한 정합의 차이를 알아보고, 생리 식염수를 주입한 방광의 체적 변화를 알아보고 방광암 환자의 치료 시 더욱 적절한 영상정합방법을 평가하고 고찰하고자 한다. 대상 및 방법: 본원에서 2009년 1월에서 2010년 4월까지 방사선치료를 위해 내원한 방광암 환자 7명을 대상으로 Folly catheter를 이용하여 방광 내 잔류 소변을 제거한 뒤 환자 개개인에 맞게 정해진 양 만큼의 생리식염수를 주입하고 CT-Sim 후 치료계획을 설계하였다. 그 뒤 OBI system을 이용하여 치료 전 자세 확인을 위해 CBCT를 찍었고, 담당 주치의가 모든 대상 환자의 영상 정합을 진행하였다. 총 45개 CBCT 영상을 이용하여 뼈를 기준으로 한 영상정합과 방광을 기준으로 한 영상정합의 차이를 분석하였다. 또, 방광의 체적 변화를 Eclipse (version 8.0, VARIAN, USA)를 통해 얻어냈다. 결 과: 뼈를 기준으로 한 영상정합을 한 후 다시 방광을 기준으로 한 정합의 차이는 X축으로 평균 $3{\pm}2mm$, Y축으로 $1.8{\pm}1.3mm$, Z축으로 $2.3{\pm}1.7mm$이고 전체 이동거리는 $4.8{\pm}2.0mm$로 나타났다. 또 방광의 체적은 기준 대비 $4.03{\pm}3.97%$의 차이를 나타냈다. 결 론: 방광의 특성상 해부학적 위치 및 내부의 움직임으로 인해 뼈를 이용한 영상정합 후에도 방광의 위치 차이가 발생하였다. 또, 생리식염수를 채운 방광의 체적은 4.03%의 차이를 나타냈으나 영상 정합 시 모두 계획한 볼륨 안에 포함되는 것을 확인 할 수 있었다. 따라서 생리식염수를 주입한 뒤 방광을 기준으로 영상 정합을 실시함으로써 더욱 정확한 치료를 실시 할 수 있을 것으로 사료된다.
강내 근접치료(intracavitary brachytherapy)에서 다른 고선량률 $^{192}Ir$ 선원의 기하학적 특성으로 인한 선량분포의 차이를 비교 및 분석하였다. 본 연구에서는 Nucletron사에서 제작된 microSelectron-v1 (classic) 선원이 2014년 이후로 판매가 종료되면서 새로운 microSelectron-v2 (new) 선원과의 선량분포 차이를 치료계획시스템을 이용하여 비교 및 분석하였다. 두 선원에서 획득된 선량분포를 비교하기 위하여 point A, point B, ICRU 방광 및 직장의 기준점을 분석인자로 사용하였다. 선원과 가까운 거리에서는 microSelectron-v2 선원의 반경선량함수(radial dose function)가 microSelectron-v1 선원 보다 최대 2.6% 높았다. 선원으로부터 거리가 1, 3, 그리고 5 cm의 비등방성함수(anisotropy function)는 $20^{\circ}$ <${\theta}$ < $165^{\circ}$에서 두 선원 간에 2% 이내에서 잘 일치하였다. 다만, 거리가 0.25 cm에서 ${\theta}$ < $20^{\circ}$ 구간에서는 두 선원 간 최대 27%의 차이를 보였으며, 거리가 1, 3, 그리고 5 cm에서 ${\theta}$ > $170^{\circ}$ 구간에서는 두 선원 간 각각 13%, 10%, 그리고 7% 차이를 보였다. 두 선원을 이용한 치료계획에서는 point A, point B, 방광에 들어가는 선량의 차이는 없었으며, ICRU에서 권고하는 직장에 들어가는 선량 지점은 microSelectron-v2 선원이 microSelectron-v1선원보다 평균 0.65%, 최대 약 1%까지 높게 평가되었다. 두 선원 간의 선량분포 차이는 주로 선원의 기하학적 차이와 선원을 감싸고 있는 스테인리스 스틸(stainless steel) 캡슐의 두께 차이로 발생되지만 두 선원에서의 선량분포 차이는 1% 이내이므로 새로운 모델의 선원으로 교체하여 사용하더라도 근접치료에서의 선량분포는 임상적으로 크지 않을 것으로 판단된다.
나비서식지 복원구상은 종 보전을 위한 중요한 요인의 하나로, 나비의 생태, 서식지 경관, 작업방법, 비용분석 등에 대한 검토를 필요로 한다. 본 연구는 멸종위기종 붉은점모시나비의 서식지 복원을 위하여 요구되는 인자들을 지난 3년간 수행된 연구결과의 검토 및 나비의 성충과 유충의 존재 또는 부재를 조사하는 방법을 통하여 서식지 면적 추정 등의 방식으로 서식지 요건을 분석하였다. 그 결과 국내에서 발견된 붉은점모시나비의 서식지는 유충과 성충이 관찰되는 패치를 기준으로 최소 $300m^2$이상의 크기로 다수의 패치가 필요한 것으로 판단되었다. 따라서 붉은점모시나비 서식지 디자인에서는 기존의 서식지 환경과 유사한 곳에 5개 이상의 패치에 먹이식물과 흡밀식물이 계획되어야 한다. 그리고 나비의 이주를 활발하게 하기 위하여 이주에 방해되는 수목의 제거, 패치간 거리의 최소화, 그리고 징검다리 패치의 추가가 필요하다. 패치연결성 분석결과, 패치간의 거리가 약 600m 이상 떨어질 경우 성공적인 이주가 어려우므로, 각 패치간의 거리는 300m이내에 분포하도록 하는 것이 적절하며, 서식지 크기는 단일 패치에서는 $10,000m^2$이상, 다수의 패치 네트워크에서는 5개 이상의 패치가 인접하고, 각각의 패치는 $1,600m^2$이상으로 전체 패치면적은 $8,000m^2$이상이 필요할 것으로 추정된다. 또한, 단일 서식지보다는 다수의 패치가 인접하여 네트워크를 형성하는 것이 서식지 순환 발생패턴에서 바람직한 것으로 나타났다. 이 연구는 나비의 서식지 복원에 관한 적정한 서식지 요건을 제시하고자 하였으며, 앞으로 진행될 생물종의 복원에 있어서 모델이 될 것으로 기대한다.
이 연구는 최근 37년 동안 여름철 한국 부근 지역에 영향을 준 태풍빈도와 북서태평양 몬순(western North Pacific monsoon index, WNPMI)과의 상관을 분석하였다. 두 변수 사이에는 뚜렷한 양의 상관관계가 존재하였으며, 엘니뇨-남방진동(El Ni$\tilde{n}$o-Southern Oscillation, ENSO) 해를 제외하여도 높은 양의 상관관계는 변하지 않았다. 이러한 두 변수 사이에 양의 상관관계의 원인을 알아보기 위해 ENSO해를 제외하고 가장 높은 북서태평양 몬순지수를 갖는 8해(양의 북서태평양 몬순지수 해)와 가장 낮은 북서태평양 몬순지수를 갖는 8해(음의 북서태평양 몬순지수 해)를 선정하여 두 그룹 사이에 평균 차를 분석하였다. 양의 북서태평양 몬순지수 해에는 태풍들이 열대 및 아열대 북서태평양의 동쪽해역에 주로 발생하여 동중국해를 지나 한국 및 일본을 향해 북상하는 경향을 나타내었다. 음의 북서태평양 몬순지수 해에는 태풍들이 열대 및 아열대 북서태평양의 서쪽해상에 주로 발생하여 남중국해를 지나 중국 남동부 해안 및 인도 차이나 반도지역을 향해 서진하는 패턴을 보였다. 따라서 한국 부근 지역까지 먼 거리를 이동하면서 바다로부터 충분한 에너지를 얻을 수 있는 양의 북서태평양 몬순지수 해에의 태풍강도가 더 강하였다. 또한 양의 북서태평양 몬순지수 해에 태풍들이 더 많이 발생하는 특성을 보였다. 850 hPa과 500 hPa 유선에 대한 두 그룹 사이에 차에서는 열대 및 아열대 북서태평양에서 저기압성 아노말리가, 동아시아 중위도 지역에는 고기압성 아노말리가 강화되었다. 이 두 기압계 아노말리로 인해 한국 부근 지역에서는 남동풍 아노말리가 발달하였으며, 이 남동풍 아노말리가 태풍들을 한국 부근 지역으로 향하게 하는 지향류 아노말리의 역할을 하였다. 또한 열대 및 아열대 북서태평양에서 발달한 저기압성 아노말리로 인해 양의 북서태평양 몬순 지수해에 태풍들이 좀 더 많이 발생할 수 있었다.
목적: 본 연구는 이간계인 하워드-돌먼 입체검사와 삼간계로 성인의 동적 입체시를 측정하여 비교해 보고, PD 및 굴절이상과 동적 입체시의 상관성을 분석해 보았다. 방법: 평균연령 $21.27{\pm}2.32$(19~32)세인 성인 93명(남자50, 여자43)을 대상으로 이간계(two-rods test)와 삼간계(three-rods test)로 검사거리 2.5 m에서 동적 입체시를 각각 5회 측정하였다. 결과: 이간계와 삼간계로 측정한 동적 입체시는 각각 전체 평균 $29.91{\pm}23.03$초, $23.75{\pm}21.65$초 였고, 이중 남자는 $28.36{\pm}22.38$초, $22.28{\pm}23.79$초 여자는 $31.71{\pm}23.91$초, $25.46{\pm}19.00$초로 이간계에 비해 삼간계로 측정한 동적 입체시가 모두 좋았으나 통계적으로 유의한 차이는 없었다(p>0.05). PD 평균 표준편차 범위 60.63 mm~66.19 mm 사이의 동적 입체시는 이간계 $31.48{\pm}24.87$초, 삼간계는 $22.54{\pm}17.22초$로 통계적으로 유의한 차이가 있었으나(p<0.05), 두 검사법의 동적 입체시와 PD의 상관성은 크지 않았다. 굴절이상을 기준으로 할 때도 이간계에 비해 삼간계로 측정한 동적입체시가 모두 더 좋게 나타났으나 통계적으로 유의한 차이는 없었고(p>0.05) 굴절이상과 두 동적 입체시간의 상관성도 거의 없었다. 두 입체시는 일반적으로 정상인의 동적 입체시로 간주하는 30~50초 범위에 해당하는 결과가 나타났다. 결론: 삼간계는 이간계보다 입체시가 더 낮게 나타나 동적 입체시의 더 낮은 최소 역치를 측정할 수 있고, 두 검사법이 성인의 동적 입체시 표준검사법으로 사용되고 동적 입체시의 기준을 적용하는데 유용할 것으로 사료된다. PD와 굴절이상은 동적 입체시에 큰 영향을 주지 않는 것으로 나타났다.
실험은 심비디움 원괴체 (PLB: protocorm-like bodies)를 재료로 유전자총을 이용한 효율적인 형질전환 조건을 확립하고자 수행되었다. 이 PLB 조직에 제초제저항성 유전자인 bar 유전자와 reporter 유전자인 gus를 포함하고 있는 pCAMBIA3301 벡터를 이용하여 유전자총으로 형질전환 하였다. 형질전환 벡터에 포함되어 있는 제초제저항성유전자 (bar)를 이용하여 선발하게 되므로 선발배지에 첨가될 제초제로서 PPT (Phosphinotricin)의 적정 농도를 찾고자 실험한 결과, 5 mg/l에서 최적의 대부분의 PLB의 생육이 억제되고 신초형성이 이루어지지 않았다. 이를 기반으로 유전자총 실험에 맞는 최적 조건을 찾는 실험을 수행하여 1.0 ${\mu}m$ gold입자크기, 헬륨가스 압력은 1,100과 1,350 psi사이에서는 차이가 없다는 전제 하에 물리적 피해가 덜 가는 1,100 psi를 조건으로 선택하였고, 유전자총과 목표물과의 거리는 6 cm 그리고 DNA 농도는 1회 유전자총 발사횟수당 1.0 ${\mu}g$ 조건을 최적조건으로 하였다. 이 조건을 기반으로 100개의 PLB를 형질전환 하면 평균적으로 6 ~ 8개의 PLB가 제초제 저항성을 나타내는 개체로 성장하고 최종적으로 2개체 정도가 온실에서 순화과정을 거쳐 완전한 형질전환 식물체로 생산된다. 이외에도 유전자총 실험 전에 0.2 M sorbitol과 0.2 M mannitol을 혼합처리하여 4시간 동안 배양시키면 2배 이상 효율을 높일 수 있게 되어, 결론적으로 100개의 PLB를 형질전환 수행하면 최종적으로 3.2 ~ 4.0개 정도의 형질전환 심비디움 식물체가 나오는 효율이라고 할 수 있다. 본 실험을 통해 생산된 형질전환 심비디움 개체들은 PCR 분석을 통해 유전자 도입을 확인하였고, 형질전환 개체 중 임의로 선발된 5계통들의 잎을 Basta 0.5% 용액에 침지한 결과, 3 계통은 제초제에 저항성을 가지는 것으로 확인되었고, 그중 1계통은 아주 강한 저항성을 보여주었다. 본 실험 결과들을 바탕으로 환경저항성 등의 유용유전자가 도입된 형질전환 심비디움 식물체 개발에 기여하리라 사료된다.
셰일가스 개발 과정에서 수압 파쇄에 의해 발생하는 미소지진의 진원 분포는 균열대의 특성을 파악하는 데 필요한 중요한 정보를 제공한다. 본 연구에서는 가상의 진원에 대하여 부정확한 속도 구조 모델이 선형 역산법을 이용한 진원 결정 프로그램인 hypoellipse와 hypoDD의 결과에 어떠한 영향을 미치는 지에 대해서 알아보았다. 총 98개의 가상 관측소를 반경 4 km의 원내에 배치하였고, 25개의 지진들이 판상으로 분포한 가상 지진 세트를 관측망의 중심부에서부터 남쪽으로 1 km 간격으로 5곳에 배치하였다(S0 ~ S4). 역산 결과의 정확성을 정량적으로 평가하기 위해 진원들의 평균 위치의 차이를 의미하는 $d_1$, 가정한 진원에 대한 면적비 r, 근사 평면과 실제 평면의 경사 차이 ${\theta}$, 근사 평면과 실제 평면의 주향 차이 ${\phi}$, 근사 평면으로부터 진원들이 떨어진 거리의 제곱평균제곱근 $d_2$, 평면상에서의 진원들의 패턴의 정확성 $d_3$의 6가지 파라미터를 정의하였다. 층상 구조를 가정한 기준 속도 구조를 만들어 합성 주시자료를 계산하였으며, 속도 구조의 부정확성을 고려하기 위하여 진원 역산에 사용한 속도 구조 모델은 각 층의 기준 속도를 중심으로 0.1 km/s, 0.2 km/s, 및 0.3 km/s의 표준편차를 가지는 정규분포를 이용하여 구성하였다. 속도의 부정확성에 비례하여 오차가 커지는 파라미터에는 $d_1$, r, ${\theta}$, 및 $d_3$가 있으며, 나머지 두 파라미터는 S4의 경우를 제외하면 속도 부정확성의 정도와 관계없이 일정한 오차를 보여준다. S0, S1, S2, S3의 경우, hypoellipse와 hypoDD 모두 비슷한 $d_1$ 값을 나타낸다. 하지만 다른 파라미터의 경우 hypoDD가 훨씬 나은 결과를 보여주며, 진원의 상대적 오차는 속도 구조의 부정확도와 관계없이 수 미터 이하이다. 수압 파쇄의 부피 양상을 알기 위한 목적으로 상대적 진원 위치 부정확성을 수 미터 이내로 제한시키기 위해서 hypoellipse에서는 0.2 km/s 이내의 속도 오차의 표준편차를 가져야하며, hypoDD에서는 속도 오차의 표준편차 값이 0.3 km/s일 때에도 상대적 진원 위치 오차를 수 미터 이내로 제한시킬 수 있다.
본 연구는 마커이용여교잡(marker-assisted backcross, MAB)을 통한 내병성 토마토 신품종육성에 필요한 기초 정보를 얻기 위해 수행되었다. TYLCV, 시들음역병, 청고병, 흰가루병에 내병성인 공여친 계통 10종과 이병성이지만 우수 원예형질을 지닌 회복친 계통 4종에 대해 병리검정과 TYLCV 내병성 연관 분자마커 분석을 수행하였다. MAB를 위한 회복친 유전자 선발(background selection)용 마커개발을 목표로 SOL Genomics Network에 공시된 토마토 유전자지도(reference map)로부터 전 게놈에 균등히 분포된 108개(염색체 당 평균 9개) SSR 마커를 분석하여, 총 303개의 다형성 마커를 기반으로 공여친, 회복친 계통 간 유연관계를 분석하였다. 그 결과, 유사도 값의 전체 범위는 0.33-0.80으로계통 간 가장 높은 유사도 값(0.80)을 나타낸 것은 청고병에 저항성인 '10BA333'와 '10BA424'이었고, 가장 낮은 유사도 값(0.33)을 나타낸 것은 시들음역병에 내병성인 야생종 L3708(Solanum pimpinelliforium L.)과 청고병에 저항성인 '10BA424'이었다. 유사도 값을 이용하여 UPGMA 분석한 결과, 유사도 0.58를 기준으로 나누었을 때 3개의 군(cluster)으로 분류되었는데, 대부분 동일한 내병성을 지닌 공여친계통 간 유전적 거리가 가까워 이들은 공통된 저항성 재료를 이용한 육성과정에서 파생된 계통일 것이라 판단되었다. 계통수(dendrogram)를 기준으로 유전적 거리가 지나치게 멀지 않으면서 비교적 다수의 회복친 유전자 선발용 SSR 마커의 확보가 가능한 여교배 조합(공여친 ${\times}$ 회복친)은 TYLCV 내병성의 경우 'TYR1' ${\times}$ 'RPL1', 청고병의 경우 '10BA333' 또는 '10BA424' ${\times}$ 'RPL2', 흰가루병의 경우 'KNU12' ${\times}$ 'AV107-4' 또는 'RPL2'로 판단되었다. 시들음역병의 경우 내병성 공여친인 'L3708'은 야생종으로서 모든 회복친 계통들과 유전적 거리가 매우 멀었으며, 적절한 조합은 유사도 값이 0.41이며 계통 간 45개의 다형성 SSR 마커가 선발된 'L3708' ${\times}$ 'AV107-4'로 판단되었다.
본 연구는 영산강·섬진강 수계에 위치한 16개 호소에 대해서 어류군집을 조사하고 호소별, 호소 규모별 어류군집 특성을 분석하였다. 조사 방법과 지점수는 환경부의 "생물측정망 조사 및 평가 지침"에 따라 이루어졌으며, 소형호, 중형호, 대형호로 구분하여 어류군집을 비교 분석하였다. 2018년(7개 호소)에서 2019년(9개 호소)에 이루어진 조사에서 총 13과 44종의 어류가 채집되었으며, 우점종은 치리(Hemiculter eigenmanni, RA, 32.9%), 아우점종은 블루길(Lepomis macrochirus RA, 31.4%)로 나타났다. 호소 규모에 따라 분석한 결과 소형호에서는 평균(±표준편차) 11±2.9종이 채집되었으며, 중형호는 14.3±2.1종, 대형호는 22.7±0.6종으로 호소의 규모가 커질수록 출현 종수가 증가하는 양의 상관성을 나타냈다. 호소 규모별 어류군집 요인은 총 6개 항목(총 종수, 총 개체수, 풍부도, 초식 성종 개체수 비율, 육식성종 개체수 비율, 외래종 종수)에서 차이를 보였다(P<0.05). 호소별 어류군집 유사도 분석결과 16개 호소가 60%의 유사도에서 5개 그룹으로 구분되었으며, 군집 유사도는 호소의 규모보다는 호소 간 거리, 수계, 호소의 발달 위치 및 환경유형이 영향을 미치는 것으로 나타났다. 본 연구는 국내 호소의 어류군집 구조 이해에 도움이 될 수 있으며, 특히 영산강·섬진강 수계의 호소 관리 및 정책 마련에 기초자료로 활용될 수 있을 것이다.
연안에서 관측된 Acoustic Doppler Current Profiler(ADCP) 유속자료의 10-20%는 음향반사 측면효과로 인하여 일반적으로 사용하지 않는다. 본 연구는 ADCP의 사용되지 않았던 자료를 복구하여 영산강 하구에서 저조시 방류되는 담수의 경계면 이류속도를 구하고 이를 통해 담수 유량과 수층의 역학적 안정도를 보다 정확하게 계산하여 하구 내 혼합 환경을 잘 이해하고자 한다. 현장관측은 2011년 8월 영산강의 하구언 전면과 고하도 부근 두 정점에서 한달 동안 실시하였으며, 방류수의 이류속도는 유효 유속 판정에 상관도, 퍼센트굿, 그리고 유속 히스토그램의 엄격한 기준을 적용한 ADCP 후처리방법을 적용하여 복원하였다. 또한, 같은 수로에 위치한 두 정점에서 이류하는 퇴적물의 농도피크시간을 토대로 퇴적물의 이류속도(Sediment Advection Speed)를 계산하여 방류수 이류속도를 비교 검증하였다. 퇴적물의 이류속도를 방류시 ADCP의 표층유속과 비교하였을 때, 방류량이 $2.0{\times}10^7$톤 보다 크면 두 속도값이 유사하고, 그보다 적을 경우에는 퇴적물의 이류속도가 약간 크게 산정되는 것을 볼 수 있었다. 방류가 발생할때 담수이류속도(Freshwater Advection Speed)는 바닥으로부터 $0.8{\times}$수심의 유속보다 평균 0.8 m/s 정도 크기 때문에, 방류가 증가하는 시기에 새롭게 계산된 방류수의 속도를 포함한 순유출량(=수심 및 조석주기로 적분된 흐름)을 계산하면, 그 방향이 하구언으로 들어오는 방향에서 빠져나가는 방향으로 바뀌는 것을 확인할 수 있었다. 또한, 표층 담수의 속도가 더해짐으로써 표층 속도쉬어와 리차드슨 수의 분포가 바뀜을 관찰할 수 있었기 때문에 표층 해수의 안정도를 해석함에 있어 실제 방류수 유속의 중요성을 알 수 있었다. 향후 유속과 함께 수온과 염분의 장기적인 관측이 수행된다면 담수 방류에 따른 성층의 생성과 소멸, 그리고 관련 부유퇴적물의 변동에 대해서도 보다 정확하게 파악할 수 있을 것으로 생각된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.