DOI QR코드

DOI QR Code

Evaluation of Germplasm and Development of SSR Markers for Marker-assisted Backcross in Tomato

분자마커 이용 여교잡 육종을 위한 토마토 유전자원 평가 및 SSR 마커 개발

  • Hwang, Ji-Hyun (Department of Horticultural Bioscience, Pusan National University) ;
  • Kim, Hyuk-Jun (Department of Horticultural Bioscience, Pusan National University) ;
  • Chae, Young (National Institute of Horticulture & Herbal Science) ;
  • Choi, Hak-Soon (National Institute of Horticulture & Herbal Science) ;
  • Kim, Myung-Kwon (Tomato Life Science & Research Center) ;
  • Park, Young-Hoon (Department of Horticultural Bioscience, Pusan National University)
  • 황지현 (부산대학교 원예생명과학과) ;
  • 김혁준 (부산대학교 원예생명과학과) ;
  • 채영 (국립원예특작과학원) ;
  • 최학순 (국립원예특작과학원) ;
  • 김명권 (토마토생명과학연구소) ;
  • 박영훈 (부산대학교 원예생명과학과)
  • Received : 2012.02.16
  • Accepted : 2012.07.18
  • Published : 2012.10.31

Abstract

This study was conducted to achieve basal information for the development of tomato cultivars with disease resistances through marker-assisted backcross (MAB). Ten inbred lines with TYLCV, late blight, bacterial wilt, or powdery mildew resistance and four adapted inbred lines with superior horticultural traits were collected, which can be useful as the donor parents and recurrent parents in MAB, respectively. Inbred lines collected were evaluated by molecular markers and bioassay for confirming their disease resistances. To develop DNA markers for selecting recurrent parent genome (background selection) in MAB, a total of 108 simple sequence repeat (SSR) primer sets (nine per chromosome at average) were selected from the tomato reference genetic maps posted on SOL Genomics Network. Genetic similarity and relationships among the inbred lines were assessed using a total of 303 polymorphic SSR markers. Similarity coefficient ranged from 0.33 to 0.80; the highest similarity coefficient (0.80) was found between bacterial wilt-resistant donor lines '10BA333' and '10BA424', and the lowest (0.33) between a late blight resistant-wild species L3708 (S. pimpinelliforium L.) and '10BA424'. UPGMA analysis grouped the inbred lines into three clusters based on the similarity coefficient 0.58. Most of the donor lines of the same resistance were closely related, indicating the possibility that these lines were developed using a common resistance source. Parent combinations (donor parent ${\times}$ recurrent parent) showing appropriate levels of genetic distance and SSR marker polymorphism for MAB were selected based on the dendrogram. These combinations included 'TYR1' ${\times}$ 'RPL1' for TYLCV, '10BA333' or '10BA424' ${\times}$ 'RPL2' for bacterial wilt, and 'KNU12' ${\times}$ 'AV107-4' or 'RPL2' for powdery mildew. For late blight, the wild species resistant line 'L3708' was distantly related to all recurrent parental lines, and a suitable parent combination for MAB was 'L3708' ${\times}$ 'AV107-4', which showed a similarity coefficient of 0.41 and 45 polymorphic SSR markers.

본 연구는 마커이용여교잡(marker-assisted backcross, MAB)을 통한 내병성 토마토 신품종육성에 필요한 기초 정보를 얻기 위해 수행되었다. TYLCV, 시들음역병, 청고병, 흰가루병에 내병성인 공여친 계통 10종과 이병성이지만 우수 원예형질을 지닌 회복친 계통 4종에 대해 병리검정과 TYLCV 내병성 연관 분자마커 분석을 수행하였다. MAB를 위한 회복친 유전자 선발(background selection)용 마커개발을 목표로 SOL Genomics Network에 공시된 토마토 유전자지도(reference map)로부터 전 게놈에 균등히 분포된 108개(염색체 당 평균 9개) SSR 마커를 분석하여, 총 303개의 다형성 마커를 기반으로 공여친, 회복친 계통 간 유연관계를 분석하였다. 그 결과, 유사도 값의 전체 범위는 0.33-0.80으로계통 간 가장 높은 유사도 값(0.80)을 나타낸 것은 청고병에 저항성인 '10BA333'와 '10BA424'이었고, 가장 낮은 유사도 값(0.33)을 나타낸 것은 시들음역병에 내병성인 야생종 L3708(Solanum pimpinelliforium L.)과 청고병에 저항성인 '10BA424'이었다. 유사도 값을 이용하여 UPGMA 분석한 결과, 유사도 0.58를 기준으로 나누었을 때 3개의 군(cluster)으로 분류되었는데, 대부분 동일한 내병성을 지닌 공여친계통 간 유전적 거리가 가까워 이들은 공통된 저항성 재료를 이용한 육성과정에서 파생된 계통일 것이라 판단되었다. 계통수(dendrogram)를 기준으로 유전적 거리가 지나치게 멀지 않으면서 비교적 다수의 회복친 유전자 선발용 SSR 마커의 확보가 가능한 여교배 조합(공여친 ${\times}$ 회복친)은 TYLCV 내병성의 경우 'TYR1' ${\times}$ 'RPL1', 청고병의 경우 '10BA333' 또는 '10BA424' ${\times}$ 'RPL2', 흰가루병의 경우 'KNU12' ${\times}$ 'AV107-4' 또는 'RPL2'로 판단되었다. 시들음역병의 경우 내병성 공여친인 'L3708'은 야생종으로서 모든 회복친 계통들과 유전적 거리가 매우 멀었으며, 적절한 조합은 유사도 값이 0.41이며 계통 간 45개의 다형성 SSR 마커가 선발된 'L3708' ${\times}$ 'AV107-4'로 판단되었다.

Keywords

References

  1. Babu, R., S.K. Nair, A. Kumar, S. Venkatesh, J.C. Sekhar, N.N. Singh, G. Srinivasan, and H.S. Gupta. 2005. Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize (QPM). Theor. Appl. Genet. 111:888-897. https://doi.org/10.1007/s00122-005-0011-6
  2. Bai, Y., C.C. Huang, R. Hulst, F. Meijer-Dekens, G. Bonnema, and P. Lindhout. 2003. QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two quantitative powdery mildew resistance genes. Mol. Plant Microbe Interact. 16:169-176. https://doi.org/10.1094/MPMI.2003.16.2.169
  3. Barone, A. 2004. Molecular marker-assisted selection for potato breeding. Amer. J. Potato Res. 81:111-117. https://doi.org/10.1007/BF02853608
  4. Behera, T.K., J.E. Staub, S. Behera, I.Y. Deannay, and J.F. Chen. 2011. Marker-assisted backcross selection in an interspecific Cucumis population broadens the genetic base of cucumber (Cucumis sativus L.). Euphytica 178:261-272. https://doi.org/10.1007/s10681-010-0315-8
  5. Benor, S., M. Zhang, Z. Wang, and H. Zhang. 2008. Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. J. Genet. Genomics 35:373-379. https://doi.org/10.1016/S1673-8527(08)60054-5
  6. Botstein, D., R.L. White, M. Skolnick, and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
  7. Carmeille, A., C. Caranta, J. Dintinger, P. Prior, J. Luisetti, and P. Besse. 2006. Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor. Appl. Genet. 113:110-121. https://doi.org/10.1007/s00122-006-0277-3
  8. Cho, Y.G., M.Y. Eun, S.R. McCouch, and Y.A. Chae. 1994. The semiwarf gene, sd-1 or rice (Oryza sativa L.). II: Molecular mapping and marker-assisted selection. Theor. Appl. Genet. 89:54-59.
  9. Collard, B.C.Y. and D.J. Mackill. 2008. Marker-assisted selection: An approach for precision plant breeding in the 21st century. Phil. Trans. Royal. Soc. B. Rev. 363:557-572 https://doi.org/10.1098/rstb.2007.2170
  10. Fazio, G., S.M. Chung, and J.E. Staub. 2003. Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 107:875-883. https://doi.org/10.1007/s00122-003-1313-1
  11. Food and Agriculture Organization of the United Nations (FAO) 2008. Food and agricultural commodities production. http://www.fao.org/
  12. Foolad, M.R. 2007. Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics Article ID 64358.
  13. Fulton, T.M., R. van der Hoeven, N.T. Eannetta, and S.D. Tanksley. 2002. Identification, analysis and utilization of a conserved ortholog set (COS) markers for comparative genomics in higher plants. Plant Cell 14:1457-1467. https://doi.org/10.1105/tpc.010479
  14. Gonzalo, M.J. and E. van der Knaap. 2008. A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor. Appl. Genet. 116:647-656. https://doi.org/10.1007/s00122-007-0698-7
  15. Herzog, E. and M. Frisch. 2011. Selection strategies for markerassisted backcrossing with high-throughput marker systems. Theor. Appl. Genet. 123:251-260. https://doi.org/10.1007/s00122-011-1581-0
  16. He, C., V. Poysa, and K. Yu. 2003. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor. Appl. Genet. 106:363-373.
  17. Hospital, F., C. Chevalet, and P. Mulsant. 1992. Using markers in gene introgression breeding programs. Genetics 132:1199-1210.
  18. Hospital, F. 2001. Size of donor chromosome segments around introgressed loci and reduction of linkage drag in markerassisted backcross programs. Genetics 158:1363-1379.
  19. Hwang, J.H., S.G. Ahn, J.Y. Oh, Y.W. Choi, J.S. Kang, and Y.H. Park. 2011. Functional characterization of watermelon (Citrullus lanatus L.) EST-SSR by gel electrophoresis and high resolution melting analysis. Sci. Hort. 130:715-724. https://doi.org/10.1016/j.scienta.2011.08.014
  20. Iftekharuddaula, K.M., M.A. Newaz, M.A. Salam, H.U. Ahmed, M.M.A Mahbub, E.M. Septiningsih, B.C.Y. Collard, D.L Sanchez, A.M. Pamplona, and D.J. Mackill. 2011. Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into BR11, the rainfed lowland rice mega variety of Bangladesh. Euphytica 178:83-97. https://doi.org/10.1007/s10681-010-0272-2
  21. Jeong, Y., J. Kim, Y. Kang, S. Lee, and I. Hwang. 2007. Genetic diversity and distribution of Korean isolates of Ralstonia solanacearum. Plant Dis. 91:1277-1287. https://doi.org/10.1094/PDIS-91-10-1277
  22. Kim, B.S. 2012. Evaluation of tomato genetic resources for the development of resistance breeding lines against late blight. Res. Plant Dis. 18:35-39. https://doi.org/10.5423/RPD.2012.18.1.035
  23. Kim, W.I., B.J. Lee, J.Y. Oh, H.S. Lee, G.M. Shon, C.W. Rho, C.S. Lim, J.H. Ha, Y.H. Park, and Y.B. Kim. 2010. Selection of tomato yellow leaf curl virus (TYLCV) resistant cultivar and fruit quality in tomato. Kor. J. Hort. Sci. Technol. 28 (Suppl. II):55-56. (Abstr.)
  24. Korean Seed Association (KOSA). 2012. Import and export present condition. http://kosaseed.co.kr
  25. Korean Statistical Information Service (KOSIS). 2010. Survey of cultivation, survey of farm production. http://kosis.kr
  26. Levinson, G. and G.A. Gutman. 1987. Slipped-Strand mispairing: A major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4:203-221.
  27. Lee, H.J., E.J. Jo, N.H. Kim, Y. Chae, and S.W. Lee. 2011. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant Dis. 17:326-333. https://doi.org/10.5423/RPD.2011.17.3.326
  28. Neeraja, C.N., R. Rodriguez-Maghirang, A. Pamplona, S. Heuer, B.C.Y. Collard, E.M. Septiningsih, G. Vergara, D. Sanchez, K. Xu, A.M. Ismail, and D.J. Mackill. 2007. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl. Genet. 115:767-776. https://doi.org/10.1007/s00122-007-0607-0
  29. Nei, M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76:5269-5273. https://doi.org/10.1073/pnas.76.10.5269
  30. Oliveira, L.K., L.C. Melo, C. Brondani, M.J.D. Peloso and R.P.V. Brondani. 2008. Backross assisted by microsatellite markers in common bean. Genet. Mol. Res. 7:1000-1010. https://doi.org/10.4238/vol7-4gmr478
  31. Park, P.H., Y. Chae, H.R. Kim, K.H. Chung, D.G. Oh, and K.T. Kim. 2010a. Development of a SCAR maker linked to Ph-3 in Solanum ssp. Korean J. Breed. Sci. 42:139-143.
  32. Park, Y.H., K.H. Kim, Y.M. Choi, H.S. Choi, Y. Chae, K.S. Park, and S.M. Chung. 2010b. Evaluation of TYLCV-resistant tomato germplasm using molecular markers. Kor. J. Hort. Sci. Technol. 28:89-97.
  33. Prigge, V., A.E. Melchinger, B.S. Dhillon, and M. Frisch. 2009. Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations. Theor. Appl. Genet. 119:23-32. https://doi.org/10.1007/s00122-009-1013-6
  34. Rohlf, F.J. 2002. NTSYS-pc: numerical taxonomy system, ver. 2.1. Exeter Publishing Ltd., Setauket, NY.
  35. Ribuat, J.M. and M. Ragot. 2007. Marker-assisted selection to improve drought adaptation in maize: The backcross approach, perspectives, limitations, and alternatives. J. Exp. Bot. 58:351-360.
  36. Servin, B. and F. Hospital. 2002. Optimal positioning of markers to control genetic background in marker-assisted backcrossing. J. Hered. 93:214-217. https://doi.org/10.1093/jhered/93.3.214
  37. Sokal, R. and C. Michener. 1958. A statistical method for evaluating systematic relationships. Univ. Kansas. Sci. Bull. 38:1409-1438.
  38. Stam, P. and A.C. Zeven. 1981. The theoretical portion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30:227-238. https://doi.org/10.1007/BF00033982
  39. Tanksley, S.D., N.D. Young, A.H. Patterson, and M.W. Bonierbale. 1989. RFLP mapping in plant breeding: New tools for an old science. Bio. Technol. 7:257-264. https://doi.org/10.1038/nbt0389-257
  40. Wang, J., J. Oliver, P. Thoquet, B. Mangin, L. Sauviac, and N.H. Grimsley. 2000. Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol. Plant Microbe Interact. 13:6-13. https://doi.org/10.1094/MPMI.2000.13.1.6
  41. Yang, W. and D.M. Francis. 2005. Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J. Amer. Soc. Hort. Sci. 130:716-721.

Cited by

  1. Discrimination of Korean rice varieties as revealed by DNA profiling and its relationship with genetic diversity vol.44, pp.3, 2017, https://doi.org/10.5010/JPB.2017.44.3.243
  2. Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis vol.131, pp.5, 2018, https://doi.org/10.1007/s00122-018-3054-1
  3. 토마토품종의 토마토황화잎말림바이러스병에 대한 저항성 평가 vol.22, pp.4, 2012, https://doi.org/10.5423/rpd.2016.22.4.297
  4. Development of SNP marker set for marker-assisted backcrossing (MABC) in cultivating tomato varieties vol.45, pp.3, 2012, https://doi.org/10.7744/kjoas.20180061