DOI QR코드

DOI QR Code

An Efficient Identification of 68 Apple Cultivars Using a Cultivar Identification Diagram (CID) Strategy and RAPD Markers

  • Wang, Wenyan (College of Horticulture, Nanjing Agricultural University) ;
  • Wang, Kun (Research Institute of Pomology, Chinese Academy of Agricultural Sciences) ;
  • Liu, Fengzhi (Research Institute of Pomology, Chinese Academy of Agricultural Sciences) ;
  • Fang, Jinggui (College of Horticulture, Nanjing Agricultural University)
  • Received : 2011.06.21
  • Accepted : 2012.07.12
  • Published : 2012.10.31

Abstract

The study aimed to establish an efficient tool for cultivar identification and characterization being the first steps of apple introduction and improvement program. We utilized a method to efficiently record DNA molecular fingerprints of plant individuals genotyped by RAPD, which could be used as efficient reference information for quick plant identification. Ten of sixty 11-mer primers were screened to identify the 68 apple genotypes which could be distinguished by a combination of several primers. All cultivars were easily identified by the corresponding primers marked on the cultivar identification diagram (CID). The results indicated that the CID strategy developed and employed in the apple cultivar identification could be vital in the utilization of DNA marker in other plants as well as the development of the apple industry.

Keywords

References

  1. Archak, S., A.B. Gaikwad, D. Gautam and E.V.V.B. Rao. K.R.M. Swami, and J.L. Karihaloo. 2003. DNA fingerprinting of Indian cashew (Anacardium occidentale L.) varieties using RAPD and ISSR techniques. Euphytica 130:397-404. https://doi.org/10.1023/A:1023074617348
  2. Belaj, A., Z. Satovic, H. Ismaili, D. Panajoti, L. Rallo, and I. Trujillo. 2003. RAPD genetic diversity of Albanian olive germplasm and its relationships with other Mediterranean countries. Euphytica 130:387-395. https://doi.org/10.1023/A:1023042014081
  3. Benjak, A., S. Ercisli, A. Vokurka, E. Maletic, and I. Pejic. 2005. Genetic relationships among grapevine cultivars native to Croatia, Greece, and Turkey. Vitis 44:73-77.
  4. Bousquet, J., L. Simon, and M. Lalonde. 1990. DNA amplification from vegetative and sexual tissues of tree using polymerase chain reaction. Can. J. For. Res. 20:254-257. https://doi.org/10.1139/x90-037
  5. Cheng, Z.P. and H.W. Huang. 2009. SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Scientia Hort. 120:188-193. https://doi.org/10.1016/j.scienta.2008.10.008
  6. Demirsoy, L., T. Demir, H. Demirsoy, Y.A. Kacar, and A. Okumus. 2008. Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Hort. 795:147-152.
  7. Ding, X.D., L.X. Lu., X.J. Chen, and X. Guan. 2000. Identifying litchi cultivars and evaluating their genetic relationships by RAPD markers. J. Trop. Subtrop. Bot. 8:49-54.
  8. D'Onofrio, C., G. Lorenzis, T. de Giordani, L. Natali, G. Scalabrelli, and A. Cavallini. 2009. Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Hort. 827:45-52.
  9. Elidemir, A.Y. and I.U Zun. 2009. Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Hort. 827:275-278.
  10. Lee, G.P., C.H. Lee, and C.S. Kim. 2004. Molecular markers derived from RAPD, SCAR, and the conserved 18S rDNA sequences for classification and identification in Pyrus pyrifolia and P. communis. Theor. Appl. Genet. 108:1487-1491. https://doi.org/10.1007/s00122-003-1582-8
  11. Lee, Y.P., G-H.Yu, Y.S. Seo, S.E. Han, Y.-O. Choi, D. Kim, I.-G. Mok, W.T. Kim, and S.-K. Sung. 2007. Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep. 26:917-926. https://doi.org/10.1007/s00299-007-0308-9
  12. Li, R.H., B.Yang, C.S. Qiao, and B.H. Cheng. 1980. The apple varieties of Liaoning. People's Publishing House, Liaoning, China.
  13. Marinello, L., M.G. Sommella, A. Sorrentina, M. Forlani, and R. Porto. 2002. Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotechnol Lett. 24:749-755. https://doi.org/10.1023/A:1015516712754
  14. Melgarejo, P., J.J. Martcnez, F. HerncLndez, R. Martcnez, P. Legua, R. Oncina, and A. Martcnez-Murcia. 2009. Cultivar identification using 18S-28S rDNA intergenic spacer-RFLP in pomegranate (Punica granatum L.). Scientia Hort. 120:500-503. https://doi.org/10.1016/j.scienta.2008.12.013
  15. Murray, G.C. and W.F. Thompson. 1980. Rapid isolation of high molecular weight DNA. Nucl. Acid Res. 8:4321-4325. https://doi.org/10.1093/nar/8.19.4321
  16. Palombi, M.A. and C. Damiano. 2002. Comparison between RAPDs and SSRs molecular markers in detecting genetic variation in kiwifruit [Actinidia deliciosa A. Chev]. Plant Cell Rep. 20:1061-1066. https://doi.org/10.1007/s00299-001-0430-z
  17. Papp, N., B. Szilvassy, L. Abranko, T. Szabo, P. Pfeiffer, Z. Szabo, J. Nyeki, S. Ercisli, E. Stefanovits-Banyai, and A. Hegedus. 2010. Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Intl. J. Food Sci. Technol. 45:395-402. https://doi.org/10.1111/j.1365-2621.2009.02168.x
  18. Roche, P., F.H. Alston, C. Maliepaard, K.M. Evans, R. Vrielink, F. Dunemann, T. Markussen, S. Tartarini, L.M. Brown, C. Ryder, and G.J. King. 1997. RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theor. Appl. Genet. 94:528-533. https://doi.org/10.1007/s001220050447
  19. Sadder, M.T. and A.F. Ateyyeh. 2006. Molecular assessment of polymorphism among local Jordanian genotypes the common fig (Ficus carica L.). Scientia Hort. 107:341-351.
  20. Silfverberg-Dilworth, E., C. Matasci, W. Van de Weg, M. Van Kaauwen, M. Walser, L. Kodde, V. Soglio, L. Gianfranceschi, C. Durel, F. Costa, T. Yamamoto, B. Koller, C. Gessler, and A. Patocchi. 2006. Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet. Genomes 2:202-224. https://doi.org/10.1007/s11295-006-0045-1
  21. Stark-Urnau, M. 2002a. Use of RAPD-markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part I Malus x domestica (apple). Erwerbsobstbau 44:139-144.
  22. Stark-Urnau, M. 2002b. Use of RAPD-markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part II Pyrus communis (Birne). Erwerbsobstbau 44:167-171.
  23. Vijayan, K. 2004. Genetic relationships of Japanese and Indian mulberry (Morus spp.) genotypes revealed by DNA fingerprinting. Plant System. Evol. 243:221-232. https://doi.org/10.1007/s00606-003-0078-y
  24. Williams, J.G.K., A.R. Kubelik, K.J. Livak, A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535. https://doi.org/10.1093/nar/18.22.6531
  25. Xin, P.G. and F.G. Xiang. 1998. Classification of and relation for the native, introduced and bred apple cultivars in China. J. Shandong Agri. Univ. 29:189-200.
  26. Yonemoto, Y., A.K. Chowdhury, H. Kato, and M.M. Macha. 2006. Cultivars identification and their genetic relationships in Dimocarpus longan subspecies based on RAPD markers. Scientia Hort. 109:147-152. https://doi.org/10.1016/j.scienta.2006.04.003
  27. Yu, H.P., J.G. Fang, M.Y. Zhang, G. Yang, X. Cao, and H.H. Tan. 2009. Study on application of RAPD marker in cultivar identification of seven fruit crops. Acta Agriculturae Jiangxi 21(10):5-9.