• Title/Summary/Keyword: available power

Search Result 1,805, Processing Time 0.035 seconds

Zeroth-Order Shear Deformation Micro-Mechanical Model for Periodic Heterogeneous Beam-like Structures

  • Lee, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.55-62
    • /
    • 2015
  • This paper discusses a new model for investigating the micro-mechanical behavior of beam-like structures composed of various elastic moduli and complex geometries varying through the cross-sectional directions and also periodically-repeated along the axial directions. The original three-dimensional problem is first formulated in an unified and compact intrinsic form using the concept of decomposition of the rotation tensor. Taking advantage of two smallness of the cross-sectional dimension-to-length parameter and the micro-to-macro heterogeneity and performing homogenization along dimensional reduction simultaneously, the variational asymptotic method is used to rigorously construct an effective zeroth-order beam model, which is similar a generalized Timoshenko one (the first-order shear deformation model) capable of capturing the transverse shear deformations, but still carries out the zeroth-order approximation which can maximize simplicity and promote efficiency. Two examples available in literature are used to demonstrate the consistence and efficiency of this new model, especially for the structures, in which the effects of transverse shear deformations are significant.

A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement (탄소나노튜브 스마트 복합소재의 전기적 임피던스 변화를 이용한 나노센서의 센싱 특성 연구)

  • Kang, I.P.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • To address the need for new intelligent sensing, this paper introduces nano sensors made of carbon nanotube (CNT) composites and presents their preliminary experiments. Having smart material properties such as piezoresistivity, chemical and bio selectivity, the nano composite can be used as smart electrodes of the nano sensors. The nano composite sensor can detect structural deterioration, chemical contamination and bio signal by means of its impedance measurement (resistance and capacitance). For a structural application, the change of impedance shows specific patterns depending on the structural deterioration and this characteristic is available for an in-situ multi-functional sensor, which can simultaneously detect multi symptoms of the structure. This study is anticipated to develop a new nano sensor detecting multiple symptoms in structural, chemical and bio applications with simple electric circuits.

  • PDF

A Modelling of Structural Excitation Forces Due to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류 경계층 내 벽면 변동 압력의 구조 기진력 모델링)

  • Hong, Chin-Suk;Shin, Ku-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.817-824
    • /
    • 2000
  • It is essential to analyze structural vibrations due to turbulent wall pressure fluctuations over a body surface which moves through a fluid, because the vibrations can be a severe source of noise affecting to passengers in airplanes and SONAR performance. Generally, this kind of problems have been solved for very simplified models, e.g. plates, which can be applied to the wavenumber domain analysis. In this paper, a finite element modeling of the wall pressure fluctuations over arbitrary smooth surfaces is investigated. It is found that the modeled wall pressure fluctuation at nodes becomes uncorrelated at higher frequencies and at lower flow speeds, and the response is over-estimated due to the aliased power. Finally, the frequency range available for uncorrelated loading model and two power correction schemes are presented.

  • PDF

A study on the development of drum-type boiler simulator using the signal-flow diagram model (신호 흐름도 모델을 이용한 드럼형 보일러 시뮬레이터의 개발에 관한 연구)

  • 김재선;황동환;김병국;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.194-199
    • /
    • 1990
  • Because of being operated to accomodate the load variation, fossile power plants need modern controller to satisfy frequency regulation, fast response and efficiency requirement. But in the way of developing the Digital Instrumentation and Control System that can adopt advanced control algorithms, power plant simulator must be available for safe and convenient test. In this paper, a simple drum-type boiler model is proposed, using Signal Flow Diagram that describes the system by a collection of basic time response representing the relationship between process variables. After verifying the model and thereafter building simulator based on the proposed model, we test the operation of controller and approve stability or efficiency of implemented control algorithms.

  • PDF

$100 A/mm^2$ Class Bi-2223 Tapes in Electromechanical Devices (전력기기에서 $100 A/mm^2$급 Bi-2223테이프)

  • 류경우;최경주;성기철;류강식
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.55-60
    • /
    • 2002
  • $100 A/mm^2$ class Bi-2223 tapes have recently become commercially available. Some important characteristics of the tapes, e .g. critical current, ac loss, characteristics at joint, fault current characteristics, are required for an application such as a power cable or a power transformer. In this paper they have been investigated experimentally. The results indicate that the self-field loss of the high current density tapes is not negligible, compared to resistive loss in a copper wire for the same currents. In a cable, the self-field loss for relatively large currents is much larger than the magnetization loss due to an external field. But in a transformer, the magnetization loss is dominant, compared to the self-field loss. Finally the fault current characteristics show that the high current density tapes are never safe from burn-out even for fault currents with a few cycles.

Intelligent Modeling of Nuclear Power Plant Steam Generator (원자력발전소 증기발생기의 인공지능 모델링에 관한 연구)

  • Choi, Jin-Young;Lee, Jae-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.675-678
    • /
    • 1997
  • In this research we continue the study of nuclear power plant steam generator's intelligent modeling. This model represents the input-output behavior and is a preliminary stage for intelligent control. Among many intelligent models available, we study neural network models that have been proven as universal function approximators. We select multilayer perceptrons, circular backpropagation networks, piecewise linearly trained networks and recurrent neural networks as the candidates for the steam generator's intelligent models. We take the input-output pairs from steam generator's reference model and train the neural network models. We validate trained neural network models as intelligent models of steam generator.

  • PDF

On-Line System for Partial Monitoring Discharge (온라인 부분방전 감시 시스템)

  • Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2114-2115
    • /
    • 2008
  • We consider the relation between on-line monitoring and diagnostics on the one hand and high-voltage (HV) withstand and partial discharge (PD) on-site testing on the other. HV testing supplies the basic data (fingerprints) for diagnostics. In case of warnings by on-line diagnostic systems, off-line withstand and PD testing delivers the best possible information about defects and enables the classification of the risk. Frequency tuned resonant (ACRF) test systems are best adapted to on-site conditions. They can be simply combined with PD measuring equipment. The available ACRF test systems and their application to electric power equipment -from cable systems to power transformers is described.

  • PDF

A Study about Grid-Connected Wind Power Generation System and Control Methode (계통 연계형 풍력 발전 시스템 구축 및 제어방법 연구)

  • Song, Ho-Bin;Kim, Young-Chun;Cho, Moon-Tack;Lee, Chung-Sik;Hwang, Lak-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1184-1185
    • /
    • 2008
  • The wind generation system is trend that amount used increases recently. In this paper, Introduce about development of wind force development system. This system does easily research for wind power. Compose a control program by VB so that alteration, output result deposit and waveform analysis etc. is possible and did so that all manufacturing and checkout may be available in computer.

  • PDF

Optimal Control of Photovoltaic Generation for Induction Motor Driving (유도전동기 드라이브 구동을 위한 태양광 발전의 최적화 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Jung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.185-187
    • /
    • 2008
  • This paper proposed design and development of a photo voltaic (PV) array fed induction motor drive. A drive system using a chopper circuit to track maximum power from the PV for different solar insolation and a current controlled voltage source inverter (CC-VSI) to optimally match the motor to PV characteristics is presented. The model equations governing interaction of torque and flux producing components of motor current with available solar power is developed for the operation of the system at optimum efficiency. Performance of the system is presented for different realistic operating conditions, which demonstrates its special features for applications such as solar water pumping system, solar vehicles and floor mills located in hilly and isolated areas.

  • PDF

Free transverse vibration of shear deformable super-elliptical plates

  • Altekin, Murat
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.307-331
    • /
    • 2017
  • Free transverse vibration of shear deformable super-elliptical plates with uniform thickness was studied based on Mindlin plate theory using finite element method. Quadrilateral isoparametric elements were used in the paper. Sensitivity analysis was made to determine the influence of the thickness, the aspect ratio, and the shape of the plate on the natural frequency. Accuracy of the results computed in the current study was validated by comparing them with the solutions available in the literature. The results reveal that the frequencies of clamped super-elliptical plates lie in the range bounded by elliptical and rectangular plates irrespective of the aspect ratio, and furthermore, the frequency decreases if the super-elliptical power increases. A similar trend was observed for simply supported plates with high aspect ratio. The free vibration response for the first and the second symmetric-antisymmetric (SA) modes were found to be different for high aspect ratio. The results reveal that using insufficient number of degrees of freedom results in finding a totally different relation between the super-elliptical power and the frequency.