• Title/Summary/Keyword: available power

Search Result 1,805, Processing Time 0.036 seconds

Stochastic Modeling of Plug-in Electric Vehicle Distribution in Power Systems

  • Son, Hyeok Jin;Kook, Kyung Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1276-1282
    • /
    • 2013
  • This paper proposes a stochastic modeling of plug-in electric vehicles (PEVs) distribution in power systems, and analyzes the corresponding clustering characteristic. It is essential for power utilities to estimate the PEV charging demand as the penetration level of PEV is expected to increase rapidly in the near future. Although the distribution of PEVs in power systems is the primary factor for estimating the PEV charging demand, the data currently available are statistics related to fuel-driven vehicles and to existing electric demands in power systems. In this paper, we calculate the number of households using electricity at individual ending buses of a power system based on the electric demands. Then, we estimate the number of PEVs per household using the probability density function of PEVs derived from the given statistics about fuel-driven vehicles. Finally, we present the clustering characteristic of the PEV distribution via case studies employing the test systems.

A Study on the Building Energy Analysis and Algorithm of Energy Management System (건물 에너지 분석 및 에너지 관리 시스템 알고리즘에 관한 연구)

  • Han, Byung-Jo;Park, Ki-Kwang;Koo, Kyung-Wan;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.505-510
    • /
    • 2009
  • In this paper, building energy analysis and energy cost of power stand up and demand control over the power proposed to reduce power demand. Through analysis of the load power demand special day were able to apply the pattern. In addition, the existing rate of change of load forecasting to reduce the large errors were not previously available data. And daily schedules and special day for considering the exponential smoothing methods were used. Previous year's special day and the previous day due to the uncertainty of the load and the model components were considered. The maximum demand power control simulation using the fuzzy control of power does not exceed the contract. Through simulation, the benefits of the proposed energy-saving techniques were demonstrated.

Outage Analysis and Power Allocation for Distributed Space-Time Coding-Based Cooperative Systems over Rayleigh Fading Channels

  • Lee, In-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2017
  • In this research, we study the outage probability for distributed space-time coding-based cooperative (DSTC) systems with amplify-and-forward relaying over Rayleigh fading channels with a high temporal correlation where the direct link between the source and the destination is available. In particular, we derive the upper and lower bounds of the outage probability as well as their corresponding asymptotic expressions. In addition, using only the average channel powers for the source-to-relay and relay-to-destination links, we propose an efficient power allocation scheme between the source and the relay to minimize the asymptotic upper bound of the outage probability. Through a numerical investigation, we verify the analytical expressions as well as the effectiveness of the proposed efficient power allocation. The numerical results show that the lower and upper bounds tightly correspond to the exact outage probability, and the proposed efficient power allocation scheme provides an outage probability similar to that of the optimal power allocation scheme that minimizes the exact outage probability.

Feasibility Study of FACTS Application for Available Transfer Capability Enhancement in Korean Power System (우리나라계통의 북상조류 증대를 위한 FACTS 적용방안 연구)

  • Chang, Byung-Hoon;Moon, Seung-Pil;Yoon, Jong-Su;Kim, Soo-Yeol;Baek, Doo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.63-65
    • /
    • 2005
  • Korea Electric Power Corporation (KEPCO) is in charge of the operation and the maintenance for transmission lines and substations in Korean power system which is under the deregulation power market. KEPCO has a main constrain of transmission line toward SEOUL area which is a capital of KOREA because SEOIJL is a huge load of Korean power system. The Korea Electric Power Research Institute (KEPRI)), a division of KEPCO was tasked to study the ATC enhancement of transmission line toward SEOUL using a new line or/and FACTS. This paper summarizes the results of those studies, enhancing the ATC and evaluating the economics.

  • PDF

Development of the Foldable Manual/Power Hybrid Wheelchair ($\cdot$전동 복합기능의 접이식 휠체어 개발)

  • Choi Young Chul;Rhee Kun Min;Choi Hwa Soon;Seo Young Taek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.172-180
    • /
    • 2006
  • Although there existed many types of manual/power hybrid wheelchairs, their use was not widespread because of their inconvenience in converting drive system and in folding frames. To carry a wheelchair in the car or to convert driving methods, some hard work of disassembling or exchanging wheels was required for most of currently available hybrid wheelchairs. In this study, the standard foldable manual wheelchair was reformed to a power wheelchair by installing the newly developed Axial Flux Permanent Magnet(AFPM) type of brush less direct current(BLDC) motor on each rear hub of wheelchair. This wheelchair could be driven by manual or electric power without exchanging. wheels, thus no additional work was needed for carriage or for power conversion. The developed wheelchair was evaluated for durability, stability, maneuverability, cost, and reliability in accordance with the Korean standards. The results indicated that the developed hybrid wheelchair was good enough for commercialization comparing to other imported wheelchairs.

Study on the Modularization of Power Bus Regulator for LEO Satellites (저궤도 위성의 전력조절기 모듈화에 대한 연구)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Baek;Jang, Sung-Soo;Lee, Jong-In;Kim, Hak-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.897-898
    • /
    • 2006
  • This paper proposes a new power-stage circuit that can be available for modularization of the power regulator which is used at the software-controlled unregulated bus system. And we analyze the proposed power-stage operation according to its operating modes and verify it by performing software simulation and hardware experiment using prototype. By constructing a parallel-module converter which is composed of proposed power-stages, we verify the operations and usefulness of the proposed power-stage.

  • PDF

Design of a Microcontroller Based Electronic Load Controller for a Self Excited Induction Generator Supplying Single-Phase Loads

  • Gao, Sarsing;Murthy, S. S.;Bhuvaneswari, G.;Gayathri, M. Sree Lalitha
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.444-449
    • /
    • 2010
  • The generation of electric power using self excited induction generation (SEIG) is a viable option in remote and rural areas where grid electricity is not available. The generated voltage and frequency of these machines, however, varies with varying loads. This characteristic can be resolved either by adjusting the values of the excitation capacitance or by controlling the prime mover speed. Further, in a single-point constant power application, where the machines deliver a fixed amount of power, the electronic load controller (ELC) can be used to switch-in or switch-out a dump load whenever the consumer load decreases or increases respectively. This paper presents a detailed analysis and the design of a microcontroller based SEIG -ELC system intended for stand-alone pico hydro power generation. The simulated performance of the controller is supplemented by experimental results.

A Study on AC Chopper Based DC Power Supply (교류쵸퍼를 기반으로 한 직류전원장치에 관한 연구)

  • Lee, In-Hwan;Lee, Seung-Yong;Lee, Hyeong-Joo;Kim, Myeong-Soo;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.164-165
    • /
    • 2012
  • This paper proposes an AC Chopper based DC power supply for specific DC voltage ranges. AC chopper is attached to the input side of PFC to generate specific ranges of DC voltage which are not available with PFC itself alone. The input power factor of the proposed DC power supply is proportional to that of PFC. Performance of the proposed power supply was verified by carrying out simulations.

  • PDF

A Review of Power and Sample Size Estimation in Genomewide Association Studies (유전체 연관 연구에서의 검정력 및 연구대상수 계산 고찰)

  • Park, Ae-Kyung;Kim, Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.40 no.2
    • /
    • pp.114-121
    • /
    • 2007
  • Power and sample size estimation is one of the crucially important steps in planning a genetic association study to achieve the ultimate goal, identifying candidate genes for disease susceptibility, by designing the study in such a way as to maximize the success possibility and minimize the cost. Here we review the optimal two-stage genotyping designs for genomewide association studies recently investigated by Wang et al(2006). We review two mathematical frameworks most commonly used to compute power in genetic association studies prior to the main study: Monte-Carlo and non-central chi-square estimates. Statistical powers are computed by these two approaches for case-control genotypic tests under one-stage direct association study design. Then we discuss how the linkage-disequilibrium strength affects power and sample size, and how to use empirically-derived distributions of important parameters for power calculations. We provide useful information on publicly available softwares developed to compute power and sample size for various study designs.

Power Balancing Control Method of A Residential Distributed Generation System using Photovoltaic Power Generation and Polymer Electrolyte Fuel Cells (PV와 PEFC를 병용한 가정용 분산 전원 시스템의 전력평준화 제어법)

  • Yoon, Young-Byun;Mun, Sang-Pil;Park, Han-Seok;Woo, Kyung-Il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.335-339
    • /
    • 2016
  • Output power in photovoltaic systems changes steeply with the change of the sun intensity. The change of output power has influence on the electric power quality of the system. This paper proposes a residential distributed generation system using photovoltaic power generation and polymer electrolyte fuel cells(hybrid systems). In order to level the output power which changes steeply the polymer electrolyte fuel cells are connected to the photovoltaic power generation system in parallel. Thus the generated power of all the system can be leveled. However, the steep generated power in the photovoltaic power generation system can not be leveled. Therefore, the electric double layer capacitor(EDLC) is connected in parallel with the hybrid systems. It is confirmed by the simulation that the proposed distributed generation system is available for a residential supply.