• 제목/요약/키워드: auxiliary switching circuit

검색결과 243건 처리시간 0.027초

Optimal Soft-Switching Scheme for Bidirectional DC-DC Converters with Auxiliary Circuit

  • Lee, Han Rim;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.681-693
    • /
    • 2018
  • This paper proposes a soft-switching bidirectional dc-dc converter (BDC) with an auxiliary circuit. The proposed BDC can achieve the zero-voltage switching (ZVS) using an auxiliary circuit in the buck and boost operations. The auxiliary circuit supplies optimal energy for the ZVS operation of the main switches. The auxiliary circuit consists of a resonant inductor, a back-to-back switch and two capacitors. A small-sized resonant inductor and an auxiliary switch with a low-rated voltage can be used in the auxiliary circuit. Zero-current switching (ZCS) turn-on and turn-off of the auxiliary switches are possible. The proposed soft-switching scheme has a look-up table for optimal switching of the auxiliary switches. The proposed strategy properly adjusts the turn-on time of the auxiliary switch according to the load current. The proposed BDC is verified by the results of PSIM simulations and experiments on a 3-kW ZVS BDC system.

소프트 스위칭 형태의 보조 회로를 이용한 인터리브드 벅 컨버터 (An Interleaved PWM Buck Converter with a Soft Switching Auxiliary Circuit)

  • 이의천;최현칠
    • 전력전자학회논문지
    • /
    • 제18권6호
    • /
    • pp.547-555
    • /
    • 2013
  • This paper proposes the interleaved buck converter using a soft switching auxiliary circuit. In this scheme, an auxiliary circuit is added to the conventional interleaved buck converter and used to achieve soft-switching conditions for both the main switch and freewheeling diode. In addition, the switch in the auxiliary circuit operates under soft-switching conditions. Also, according to the input to output conditions, the main switch achieved zero-current-transition(ZCT) or zero-current & zero-voltage-transition(ZCZVT) at turn on. Thus, the proposed interleaved buck converter provides a higher efficiency. The basic operations, in this paper, are discussed and design guidelines are presented. The usefulness of the proposed converter is verified on a 200kHz, 180W prototype converter.

새로운 고효율 소프트 스위칭 3상 PWM 정류기 (A NEW High Efficiency Soft-Switching Three-Phase PWM Rectifier)

  • 문상필;서기영;이현우;권순걸
    • 전자공학회논문지SC
    • /
    • 제42권2호
    • /
    • pp.49-58
    • /
    • 2005
  • 새롭게 개발되어진 소프트 스위칭 3상 PM 정류기는 간단한 회로 구성과 고효율을 가지고 있다. 제안한 회로는 ARCP 컨버터의 한 종류이다. 기존의 ARCP 컨버터는 3상 보조 리액터와 소프트 스위칭 보조 회로를 6개의 보조 스위치, 각 스위치의 게이트 구동 회로, 제어회로가 필수적이나 결과적으로 이 회로는 높은 손실을 가지고 있다. 본 논문에서 제안한 주 회로는 두 개의 보조 리액터와 두 개의 스위치와 각각의 다이오드로 구성되는 보조 소프트 스위칭 회로이다. 부가적으로 두 개의 주 스위치와 간단한 보조 스위치의 제어회로는 PWM 제어 회로로 만들어지며, 공통으로 사용하였다. 소프트 스위칭 보조 회로의 작용을 의미하며, 주 스위치는 WS로 동작되고, 보조스위치는 ZCS로 동작된다. 본 논문에서 제안한 회로의 구성과 동작 원리를 설명하였으며, 실험결과에 의해서 증명하였다 용랑5[kW]의 시작품을 사용하여 변환효율은 최대$98.8[\%]$과 역률$99[\%]$를 얻었다.

스위치 스트레스 저감이 가능한 소프트 스위칭 부스트 컨버터 (Soft Switching boost converter for reduction of switch stress)

  • 박승원;김준구;김재형;엄주경;원충연;정용채
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2009년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.155-157
    • /
    • 2009
  • This paper proposed a soft switching boost converter with an auxiliary circuit, and a modified control method for reduction of switch stress. The proposed converter applies an auxiliary circuit, which is added to the conventional boost converter and used to achieve soft switching for both a main switch and an auxiliary switch. The auxiliary circuit consist of a resonant inductor and two capacitors, an auxiliary switch. The main switch is operated ZVS turn-on, turn-off also auxiliary switch is operated ZCS turn-on, ZVS turn-off. The proposed soft switching boost converter has lower switch loss and higher efficiency than conventional soft switching boost converter.

  • PDF

보조 공진회로를 갖는 영전압-영전류 천이 부스트 컨버터 (A ZV-ZCT Boost Converter using an Auxiliary Resonant Circuit)

  • 정두용;김준구;류동균;송인범;정용채;원충연
    • 전력전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.298-305
    • /
    • 2012
  • This paper proposes a soft switching boost converter with an auxiliary resonant circuit. The auxiliary resonant circuit is added to a general boost converter and that is composed of one switch, one diode, one inductor and two capacitors. The resonant network helps the main switch to operate with a zero voltage switching(ZVS) and auxiliary switch also operates under the zero voltage and zero current conditions. The soft switching range is extended by the auxiliary switch and it is possible to control the proposed converter with a pulse width modulation(PWM). The ZVS and ZCS techniques make switching losses decreased and efficiency of the system improved. A theoretical analysis is verified through the simulation and experiment.

A Family of Magnetic Coupling DC-DC Converters With Zero-Voltage-Switching Over Wide Input Voltage Range and Load Variation

  • Chen, Guipeng;Dong, Jie;Deng, Yan;Tao, Yong;He, Xiangning;Wang, Yousheng
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1639-1649
    • /
    • 2016
  • This paper presents a family of soft-switching DC-DC converters with a simple auxiliary circuit consisting of a coupled winding and a pair of auxiliary switch and diode. The auxiliary circuit is activated in a short interval and thus the circulating conduction losses are small. With the auxiliary circuit, zero-voltage-switching (ZVS) and zero-current-switching are achieved for the main and auxiliary switches respectively, over wide input voltage range and load variation. In addition, the reverse-recovery problem of diodes is significantly alleviated because of the leakage inductor. Furthermore, the coupled inductor simultaneously serves as the main and auxiliary inductors, contributing to reduced magnetic component in comparison with the conventional zero-voltage-transition (ZVT) converters. Experimental results based on a 500 W prototype buck circuit validate the advantages and effectiveness of the proposed magnetic coupling ZVS converter.

소프트 스위칭 방식의 보조 회로를 활용한 영전류 천이형 싱크로너스 벅 컨버터 (A Zero-Current-Transition Synchronous Buck Converter Using Auxiliary Circuit with Soft-Switching)

  • 이의천;최현칠
    • 전력전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.359-366
    • /
    • 2013
  • This paper proposes a zero-current-transition(ZCT) synchronous buck converter using auxiliary circuit with soft-switching for light weight and high efficiency. In this scheme, an auxiliary circuit is added to the conventional synchronous rectifier buck converter and used to achieve soft-switching condition for both the main switch and synchronous switch. In addition, the switch in the auxiliary circuit operates under soft-switching conditions. Thus, the proposed converter provides a higher efficiency. The basic operations, in this paper, are discussed and design guidelines are presented. The usefulness of the proposed converter is verified on a 200KHz, 20 W prototype converter.

A new interleaved high step up converter with low voltage stress on the main switches

  • Tohidi, Babak;Delshad, Majid;Saghafi, Hadi
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.521-531
    • /
    • 2020
  • In this paper, a new interleaved high step-up converter with low voltage stress on the switches is proposed. In the proposed converter, soft switching is provided for all switches by just one auxiliary switch, which decreases the conduction loss of auxiliary circuit. Also, the auxiliary circuit is expanded on the converter with more input branches. In the converter all main switches operate under zero voltage switching condition and auxiliary switch operate under zero current switching condition. Because of the interleaved structure, the reliability of converter increases and input current ripples decreases. The clamp capacitor in the converter not only absorb the voltage spikes across the switch due to leakage inductance, but also improve voltage gain. The proposed converter is fully analyzed and to verify the theoretical analysis, a 100 W prototype was implemented. Also, to show the effectiveness of auxiliary circuit on conduction EMI, EMI of the proposed converter comprised with hard switching counterpart.

Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit

  • Amini, Mohammad Reza;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.10-15
    • /
    • 2011
  • In this paper, a new soft switching three phase inverter with a quasi-resonant dc-link is presented. The proposed inverter has a dc-link switch and an auxiliary switch. The inverter switches are turned on and off under zero voltage switching condition and all auxiliary circuit switches and diodes are also soft switched. The control utilizes PWM and the auxiliary switch does not require an isolated gate drive circuit. In this paper, the operation analysis and design considerations of the proposed soft switching inverter are discussed. The presented experimental results of a realized prototype confirm the theoretical analysis.

소프트 스위칭 방식을 적용한 고효율 인터리브드 벅 컨버터 (A New High Efficiency Interleaved Buck Converter with Soft-switching Scheme)

  • 김낙윤;최현칠
    • 전력전자학회논문지
    • /
    • 제19권2호
    • /
    • pp.116-123
    • /
    • 2014
  • In this paper, a soft-switching scheme for the PWM interleaved buck converter(IBC) is newly proposed to obtain the advantages of both the conventional PWM interleaved buck and resonant converters such as ease of control, reduced switching losses and stresses, and low EMI. To obtain the soft-switching action, the proposed scheme employs an auxiliary circuit, which is added to the conventional interleaved buck converter and used to achieve soft-switching for both the main switches and the output diodes while not incurring any additional losses due to the auxiliary circuit itself. In this paper, the basic operations are discussed and design guidelines are presented. And through the experimental results, the usefulness of the proposed converter is verified.