• Title/Summary/Keyword: autotrophic

Search Result 156, Processing Time 0.026 seconds

Life Cycle Assessment of the Carbon Emissions of MLE process and Denitrification Process Using Granular Sulfur (MLE공법과 황이용 탈질 프로세스의 전과정 탄소 배출량 평가)

  • Moon, Jin-young;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.619-627
    • /
    • 2012
  • In order to determine reduction of greenhouse gas emissions (GHGs) when the submerged membrane bioreactor with granular sulfur (MBR-GS) is used in wastewater treatment plant (WTP), the amount of GHGs was compared and analyzed in the advanced treatment process of P wastewater treatment plant (WTP). The amount of GHGs was estimated by classifying as construction and operation phase in WTP. The amount of GHGs in construction phase was evaluated from multiplying raw materials by using carbon emission factors. Also the amount of GHGs in operating phase was calculated by using total electricity consumption and carbon emission factor. The construction of anoxic tank and secondary settling tank is unnecessary, because the MBR-GS conducts simultaneously the nitrification and denitrification in aeration tank and filtration by hollow fiber membrane. The amount of $CO_2$, $CH_4$, and $N_2O$ emitted by constructing the MBR-GS was 6.44E+06 kg, 8.16E+03 kg and 1.38E+01 kg, respectively. The result shows that the GHGs was reduced about 47 % as compared with the construction in the MLE process. In operating the MBR-GS, the electricity is not required in the biological reactor and secondary setting tank. Thus, the amount of $CO_2$, $CH_4$, and $N_2O$ emitted by operating in the MBR-GS was 7.39E+05 kg/yr, 5.80E+02 kg/yr and 2.44E+00 kg/yr, respectively. The result shows that the GHGs were reduced about 37 % as compared with the operation in the MLE process. Also, $LCCO_2$(Life Cycle $CO_2$) was compared and analyzed between MLE process and MBR-GS. The amount of $LCCO_2 $emitted from the MLE process and MBR-GS was 3.56E+04 ton $CO_2$ and 2.12E+04 ton $CO_2$, respectively. The result shows that the GHGs in MBR-GS were reduced to about 40 % as compared in the MLE process during life cycle. As a result, sulfur-utilizing autotrophic denitrification process (SADP) is expected to be utilized as the cost-effective advanced treatment process, owing to not only high nitrogen removal efficiency but also the GHGs reduction in construction and operation stage.

Effects of Some Pesticides on Periphyton Community in Paddy field (벼 생육기간중(生育期間中) 농약(農藥)이 논의 Periphyton Community에 미치는 영향(影響))

  • Roh, Jung-Ku;Lee, Uen-Ho;Park, Chul-Won;Lee, Sung-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.2 no.2
    • /
    • pp.108-113
    • /
    • 1983
  • There has been two kind of research fields in evaluating the ecotoxicity of chemicals The one is a bioassay and the other is an ecosystem analysis. The toxicants are transported into different biota, which have quite different environmental behaviour patterns and toxic properties. The effects of pesticides (butachlor, carbofuran, and tricyclazole) on periphyton community was studied by analyzing content of chlorophyll-a and autotrophic index (AI) that is a means of determining the trophic nature of the periphyton community. Results indicated that the content of chlorophyll-a was not influenced by the pesticides. The growth of algae was inhibited by sunshine period. And AI value is 43-2027: the large value indicates heterotrophic periphyton community, and was not affected by pesticides.

  • PDF

Growth Acceleration and Acclimatization of In Vitro Plantlets derived from Apical Meristem of Sweet Potato (고구마의 경정조직 유래 기내 소식물체의 생장촉진과 순화)

  • ;;Shiro Higashi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.2
    • /
    • pp.115-119
    • /
    • 1999
  • The single node cuttings of sweet potato (cv. Mokpo #29) plantlets maintained in vitro were cultured with (MF+) or without membrane filter (MF-) under photomixotrophic (PM), hetrotrophic (HT) and autotrophic (AT) conditions. Shoot length was the greatest (11.9cm) in 3$0^{\circ}C$ (HT) treatment and it was the shortest (3.4 cm) in $25^{\circ}C$ (PM) treatment. Nodal explants cultured in 3$0^{\circ}C$ treatment looked more vigorous than those of $25^{\circ}C$ in appearance, and node number was the greatest (10.5 per plantlet) among the treatments. But plantlets grew in 3$0^{\circ}C$ (HT) treatment were observed all overgrown. The size in leaf area was about 2 times greater and shoot length was about 2 times shorter in PM than in HT condition. Percent dry matter of shoots was 5.9% (HT) and 7.4% (PM) in $25^{\circ}C$ treatment and 6.1% (HT) and 7.4% (PM) in 3$0^{\circ}C$ treatment. Plantlets cultured in the MF+ treatments were less succulent than those cultured in the MF- treatment. Vitrified plantlets were examinated 14.8% (both $25^{\circ}C$ and 3$0^{\circ}C$) in PM condition and 22.2% ($25^{\circ}C$) and 31.5% (3$0^{\circ}C$) in HT condition. Sucrose was necessary for the survival of in vitro plantlets. In the sucrose-free medium, explants cultured in the MF- had turned yellow and were dead after 30 days of culture. But explants cultured in the MF+ were alive and produced plantlets with shoot and root (AT). On the other hand, the survival of explants on the MS basal medium (sucrose-free and hormone-free) depended entirely upon the MF attachment.

  • PDF

The Estimation of Bio-kinetic Parameters using Respirometric Analysis (산소이용률을 이용한 생물학적 동력학 계수 추정)

  • Choung, Youn-Kyoo;Kim, Han-Soo;Yoo, Sung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • In order to predict the performance of biological wastewater treatment plant, the kinetic parameters and stoichiometric coefficient must be known. The theories and experimental procedures for determining the biological kinetic parameters were discussed in this study. Respirometric analysis in the batch reactor was carried out for the experimental assessment of kinetic parameters. A simple procedure to estimate kinetic parameters of heterotrophs and autotrophs under aerobic condition was presented. The difficulties in the interpretation of COD and VSS measurements encouraged the conversion of respirometric data to growth data. Maximum specific growth rate, yield coefficient, half saturation constant and decay rate of heterotrophic biomass were obtained from OUR(Oxygen Uptake Rate) data. Maximum specific growth rate of autotrophic biomass was obtained from the increase of nitrate concentration. The aim of this paper is to estimate the kinetic parameters of heterotrophic and autotrophic biomass by means of the respirometric analysis of activated sludge behavior in the batch reactors. These procedures may be used for the activated sludge modeling with complex kinetic parameters.

  • PDF

Physiological studies on cell division by the technique of synchronous culture of chlorella (II) (클로렐라의 동조배양법에 의한 세포분열의 생리학적 연구 2)

  • 이영녹;심웅섭
    • Korean Journal of Microbiology
    • /
    • v.7 no.1
    • /
    • pp.10-21
    • /
    • 1969
  • The effect of glucose and 2-thiobarbituric acid on the biosynthesis of cell constituents such as protein, carbohydrate, DNA, RNA, phospholipid and PCA-soluble phosphate compounds in Chlorella duing the life cycle was measured, and the changes in the content of these main cellular components of the algal cell were analyzed in connection with the nuclear and cytoplasmic divison. In the normal autotrophic synchronous culture the contents of protein, RNA, and DNA in the cell showed a chracteristic changes according to the progress of cell development, increasing more or less throughout all the life cycle. The synthesis of protein is more prominent in the division period nad that of DNA is more active in the ripening period, while the synthesis of RNA is more rapid in the growing and ripening periods than other developmental stages. The period of division cycle was little affected by glucose in the medium, although the synchrony of the growth and cellular division was disturbed and the n value increased. The cotents of protein, carbohydrate, RNA nad DNA of the cell were increased by the glucose treatment throughout all the life cycle. On the other hand, both of cellular growth and division were retarded severely and the n value was decreased by the 2-thiobarbituric acid treatment throughout all the life cycle. On the other hand, both of cellular growth and division were retarded severely and the n value was decreased by the 2-thiobarbituric acid treatment. The synthesis of protein, carbohydrate, DNA, RNA and phospholipid of the cell was also retarded by 2-thiobarbituric acid. In the autotrophic, mixotrophic and 2-thiobarbituric acid-treated cultures, each having different mode cytoplasmic division, a common general schema occurring in the cell during the life cycle may be drawn as follows. The ratio of RNA to protein attains maximum value in the $L_1$-cell stage prior to the nuclear division and thereafter decreases during the periods of ripening and division. The ratio of PCA-soluble phosphate compounds to protein increased from the begining of the culture to $L_4$-cell stage successively and thereafter decreased gradually during the division period, while the ratio of protein to DNA kept almost constant up to the division period and thereafter increased during the division period. Therefore, it is presumed that the increase in the ratio of RNA to protein is to be an inducer of nuclear division and that the cytoplasmic division is induced by the increase in the ratio of protein to DNA.

  • PDF

Enhanced Biomass and ${\gamma}$-Linolenic Acid Production of Mutant Strain Arthrospira platensis

  • Choi, Gang-Guk;Bae, Myong-Sook;Ahn, Chi-Yong;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.539-544
    • /
    • 2008
  • A mutant of Arthrospira platensis PCC 9108, strain M9108, obtained by mutagenesis with UV treatment, was able to mixotrophically grow in an SOT medium containing 40 g of glucose/l. The biomass and specific growth rate of strain M9108 (4.10 g/l and 0.70/d) were 1.9-fold and 1.4-fold higher, respectively, than those of the wild type (2.21 g/l and 0.58/d) under mixotrophic culture condition. In addition, when compared with the wild type, the content of ${\gamma}$-linolenic acid (GLA) in the mutant was increased when glucose concentration was increased. Compared with the wild type, the GLA content of the mutant was 2-fold higher in autotrophic culture and about 3-fold higher in mixotrophic culture. Thus, the mutant appears to possess more efficient facility to assimilate and metabolize glucose and to produce more GLA than its wild-type strain.

Survey on Food Preferences of Athletes in a Professional Soccer Team (프로축구선수의 음식기호도 조사)

  • Bae, Hyeon-Ju;Jeon, Hui-Jeong
    • Journal of the Korean Dietetic Association
    • /
    • v.8 no.1
    • /
    • pp.42-51
    • /
    • 2002
  • Questionnaire survey was performed in order to set an adequate meal table for athletes taking their food preferences into consideration. The survey was conducted against 32 athletes of a professional soccer team. Statistical data analysis was performed utilizing SAS package program. The results of this study can be summarized as follows; 18.8% of the answerers were found out to consider their autotrophic nutritional status as above average, 75.0% considered theirs as up to the average and 6.2%, below average. Among answers to the question what they consider as the most critical factor in their staying healthy; sound sleep won the most votes followed by enough rest, tranquillity and balanced eating habit. Yet, 68.8% replied their meal sizes were not settled. And 46.9% thought nutritive supplement helpful and 96.9% of the answerers said a dietitian is required as their health manager. 62.5% of them preferred Korean cuisine. Chigye and Chongol were the most preferred menus(55.6%) and Namul (28.1%), Muchim(26.3%) and Cheok.cheon(23.9%) enjoyed relatively low preference.

  • PDF

Epibionts associated with floating Sargassum horneri in the Korea Strait

  • Kim, Hye Mi;Jo, Jihoon;Park, Chungoo;Choi, Byoung-Ju;Lee, Hyun-Gwan;Kim, Kwang Young
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.303-313
    • /
    • 2019
  • Floating seaweed rafts are a surface-pelagic habitat that serve as substrates for benthic flora and fauna. Since 2008, Sargassum horneri clumps have periodically invaded the Korea Strait. In this study, the polymerase chain reaction-free small-organelles enriched metagenomics method was adopted to identify the species of epibiotic eukaryotes present in floating S. horneri fronds. A total of 185 species were identified, of which about 63% were previously undetected or unreported in Korean waters. The rafts harbored a diverse assemblage of eukaryotic species, including 39 Alveolata, 4 Archaeplastida, 95 Opisthokonts, 4 Rhizaria, and 43 Stramenopiles. Of these 185 taxa, 48 species were found at both Sargassum rafts collection stations and included 24 Stramenopiles, 17 Alveolata, and 7 Opisthokonts. Among these, the highest proportion (50%) of species was photo-autotrophic in basic trophic modes, while the proportion of phagotrophic, osmo- or saprotrophic, and parasitic modes were 43.8%, 4.2%, and 2.1%, respectively. This study demonstrates the contribution of floating Sargassum rafts as dispersal vectors that facilitate the spread of alien species.

Growth and fatty acid composition of three heterotrophic Chlorella species

  • Kim, Dae Geun;Hur, Sung Bum
    • ALGAE
    • /
    • v.28 no.1
    • /
    • pp.101-109
    • /
    • 2013
  • Some Chlorella species grow heterotrophically with organic substrate in dark condition. However, heterotrophic Chlorella species are limited and their optimum culture conditions are not fully known. In this study, three heterotrophic Chlorella species, two strains (C4-3 and C4-4) of C. vulgaris and one Chlorella sp. (C4-8) were examined on optimum culture conditions such as carbon source, temperature, and concentrations of nitrogen and phosphorus in Jaworski's medium (JM). And the growth and fatty acid composition of Chlorella were analyzed. For three heterotrophic Chlorella species, glucose (1-2%) as a carbon source only increased the growth and the range of optimum culture temperature was $26-28^{\circ}C$. Doubled concentrations of the nitrogen or phosphorus in JM medium also improved the growth of Chlorella. Chlorella cultured heterotrophically showed significantly higher growth rate and bigger cell size than those autotrophically did. C. vulgaris (C4-3) cultured heterotrophically showed the highest biomass in dry weight ($0.8g\;L^{-1}$) among three species. With respect to fatty acid composition, the contents of C16:0 and n-3 highly unsaturated fatty acid (HUFA) were significantly higher in autotrophic Chlorella than in heterotrophic one and those of total lipid were not different between different concentrations of nitrogen and phosphorus in JM medium. Among three Chlorella species in this study, C. vulgaris (C4-3) appeared to be the most ideal heterotrophic Chlorella species for industrial application since it had a high biomass and lipid content.

Impact of inhibitors of amino acid, protein, and RNA synthesis on C allocation in the diatom Chaetoceros muellerii: a FTIR approach

  • Giordano, Mario;Norici, Alessandra;Beardall, John
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.161-170
    • /
    • 2017
  • Fourier Transform Infrared (FTIR) spectroscopy was used to study carbon allocation patterns in response to N-starvation in the nearly ubiquitous diatom Chaetoceros muellerii. The role of gene expression, protein synthesis and transamination on the organic composition of cells was tested by using specific inhibitors. The results show that inhibition of key processes in algal metabolism influence the macromolecular composition of cells and and prior cell nutritional state can influence a cell's response to changing nutrient availability. The allocation of C can thus lead to different organic composition depending on the nutritional context, with obvious repercussions for the trophic web. This also shows that C allocation in algal cells is highly flexible and that C (and the energy associated with its allocation) can be variably and rapidly partitioned in algal cells in response to relatively short term perturbations. Furthermore, the data confirm and extend the utility of infrared spectroscopy as a probe of the metabolic state of autotrophic cells.