Enhanced Biomass and ${\gamma}$-Linolenic Acid Production of Mutant Strain Arthrospira platensis

  • Choi, Gang-Guk (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Bae, Myong-Sook (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Ahn, Chi-Yong (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Oh, Hee-Mock (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB))
  • Published : 2008.03.31

Abstract

A mutant of Arthrospira platensis PCC 9108, strain M9108, obtained by mutagenesis with UV treatment, was able to mixotrophically grow in an SOT medium containing 40 g of glucose/l. The biomass and specific growth rate of strain M9108 (4.10 g/l and 0.70/d) were 1.9-fold and 1.4-fold higher, respectively, than those of the wild type (2.21 g/l and 0.58/d) under mixotrophic culture condition. In addition, when compared with the wild type, the content of ${\gamma}$-linolenic acid (GLA) in the mutant was increased when glucose concentration was increased. Compared with the wild type, the GLA content of the mutant was 2-fold higher in autotrophic culture and about 3-fold higher in mixotrophic culture. Thus, the mutant appears to possess more efficient facility to assimilate and metabolize glucose and to produce more GLA than its wild-type strain.

Keywords

References

  1. Biagi, P. L., A. Bordoni, M. Masi, G. Ricci, C. Fanelli, A. Patrizi, and E. Ceccolini. 1988. A long-term study on the use of Evening Primrose Oil (Efamol) in atopic children. Drugs Exp. Clin. Res. 14: 285-290
  2. Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917 https://doi.org/10.1139/o59-099
  3. Chen, F. 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14: 421-426 https://doi.org/10.1016/0167-7799(96)10060-3
  4. Ciferri, O. 1983. Spirulina, the edible microorganism. Microbiol. Rev. 47: 551-578
  5. Cohen, Z. 1997. The chemicals of Spirulina, pp. 205-212. In A. Vonshak (ed.), Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor & Francis Ltd., London, U.K.
  6. Cohen, Z., M. Reungjitchachawali, W. Siangdung, and M. Tanticharoen. 1993. Production and partial purification of $\gamma$-linolenic acid and some pigments from Spirulina platensis. J. Appl. Phycol. 5: 109-115 https://doi.org/10.1007/BF02182428
  7. Cohen, Z., A. Vonshak, and A. Richmond. 1987. Fatty acid composition of Spirulina strains growth under various environmental conditions. Phytochemistry 26: 2255-2258 https://doi.org/10.1016/S0031-9422(00)84694-4
  8. Hirano, M., H. Mori, Y. Miura, N. Matsunaga, N. Nakamura, and T. Matsunaga. 1990. $\gamma$-Linolenic acid production by microalgae. Appl. Biochem. Biotechnol. 24/25: 183-191 https://doi.org/10.1007/BF02920244
  9. Holzinger, A. and C. Lutz. 2006. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37: 190-207 https://doi.org/10.1016/j.micron.2005.10.015
  10. Horrobin, D. F. and M. S. Manku. 1983. How do polyunsaturated fatty acids lower plasma cholesterol levels? Lipids 18: 558-562 https://doi.org/10.1007/BF02535397
  11. Ishikawa, T., Y. Fujiyama, O. Igarashi, M. Morino, N. Tada, A. Kagami, T. Sakamoto, M. Nagano, and H. Nakamura. 1989. Effects of $\gamma$-linolenic acid on plasma lipoproteins and apolipoproteins. Atherosclerosis 75: 95-104 https://doi.org/10.1016/0021-9150(89)90165-2
  12. Kim, C.-J., Y.-H. Jung, S.-R. Ko, H.-I. Kim, Y.-H. Park, and H.-M. Oh. 2007. Raceway cultivation of Spirulina platensis using underground water. J. Microbiol. Biotechnol. 17: 853-857
  13. Kim, C.-J., S.-K. Yoon, H.-I. Kim, Y.-H. Park, and H.-M. Oh. 2006. Effects of Spirulina platensis as feed additive and probiotics on growth of shrimp Fenneropenaeus chinensis. J. Microbiol. Biotechnol. 16: 1248-1254
  14. Kim, J.-D. and C.-G. Lee. 2006. Diversity of heterocystous filamentous cyanobacteria (blue-green algae) from rice paddy fields and their diffential susceptibility to ten fungicides used in Korea. J. Microbiol. Biotechnol. 16: 240-246
  15. Lepage, G. and C. C. Toy. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391-1396
  16. Nichols, B. W. and B. J. B. Wood. 1968. The occurrence and biosynthesis of $\gamma$-linolenic acid in a blue-green alga, Spirulina platensis. Lipids 3: 46-50 https://doi.org/10.1007/BF02530968
  17. Piorreck, M., K.-H. Baasch, and P. Pohl. 1984. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23: 217-233 https://doi.org/10.1016/S0031-9422(00)80305-2
  18. Richmond, A., S. Karg, and S. Boussiba. 1982. Effects of bicarbonate and carbon dioxide on the competition between Chlorella vulgaris and Spirulina platensis. Plant Cell Physiol. 23: 1411-1417
  19. Tanticharoen, M., M. Reungjitchachawali, B. Boonag, P. Vontaveesuk, A. Vonshak, and Z. Cohen. 1994. Optimization of $\gamma$-linolenic acid (GLA) production in Spirulina platensis. J. Appl. Phycol. 6: 295-300 https://doi.org/10.1007/BF02181942
  20. Tel-Or, E. 1980. Adaptation to salt of the photosynthetic apparatus in Cyanobacteria. FEBS Lett. 110: 253-256 https://doi.org/10.1016/0014-5793(80)80085-8
  21. Tripathi, U., G. Venkateshwaran, R. Sarada, and G. A. Ravishankar. 2001. Studies on Haematococcus pluvialis for improved production of astaxanthin by mutagenesis. World J. Microbiol. Biotechnol. 17: 143-148 https://doi.org/10.1023/A:1016609815405