• 제목/요약/키워드: autophagic flux

검색결과 26건 처리시간 0.028초

High Expression of KIFC1 in Glioma Correlates with Poor Prognosis

  • Pengfei Xue;Juan Zheng;Rongrong Li;Lili Yan;Zhaohao Wang;Qingbin Jia;Lianqun Zhang;Xin Li
    • Journal of Korean Neurosurgical Society
    • /
    • 제67권3호
    • /
    • pp.364-375
    • /
    • 2024
  • Objective : Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. Methods : Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. Results : The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. Conclusion : Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.

Neuronal Autophagy: Characteristic Features and Roles in Neuronal Pathophysiology

  • Valencia, McNeil;Kim, Sung Rae;Jang, Yeseul;Lee, Sung Hoon
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.605-614
    • /
    • 2021
  • Autophagy is an important degradative pathway that eliminates misfolded proteins and damaged organelles from cells. Autophagy is crucial for neuronal homeostasis and function. A lack of or deficiency in autophagy leads to the accumulation of protein aggregates, which are associated with several neurodegenerative diseases. Compared with non-neuronal cells, neurons exhibit rapid autophagic flux because damaged organelles or protein aggregates cannot be diluted in post-mitotic cells; because of this, these cells exhibit characteristic features of autophagy, such as compartment-specific autophagy, which depends on polarized structures and rapid autophagy flux. In addition, neurons exhibit compartment-specific autophagy, which depends on polarized structures. Neuronal autophagy may have additional physiological roles other than amino acid recycling. In this review, we focus on the characteristics and regulatory factors of neuronal autophagy. We also describe intracellular selective autophagy in neurons and its association with neurodegenerative diseases.

태반 추출물의 자가포식 활성을 통해 산화스트레스에 대한 슈반세포 보호 효과 (Protective Effect of Placental Extract against Oxidative Stress through Autophagy Activity in Schwann Cells)

  • 임경민;조광원;장철호
    • 통합자연과학논문집
    • /
    • 제15권3호
    • /
    • pp.123-129
    • /
    • 2022
  • Schwann cells play a critical role for myelination in peripheral nerve system. It also plays an important role in nerve protection and regeneration. In peripheral nerve damage, regeneration is induced by the migration and proliferation of Schwann cells which were promoted by suppressing the oxidative stress. In this study, Human placental extract was prepared by homogenization and estimated its efficacy in RSC96 cells. Placental extract exhibited a protective effect against hydrogen peroxide-induced oxidative stress in RSC96 cells, confirmed by MTT assay. Furthermore, placental extract decreased intracellular ROS against oxidative stress, confirmed by DCFH-DA assay. Autophagy was visualized with Cyto-ID staining to confirm the autophagy activity of placental extracts. The activity of autophagy was confirmed by immunoblot analysis of autophagy flux-associated proteins such as LC3 conversion and SQSTM1 degradation. Thus, we confirmed the antioxidant effect of placental extract to protect RSC96 cells from oxidative stress, and observed that it activated autophagy and restored autophagy flux.

Reduced Autophagy in 5-Fluorouracil Resistant Colon Cancer Cells

  • Yao, Cheng Wen;Kang, Kyoung Ah;Piao, Mei Jing;Ryu, Yea Seong;Fernando, Pattage Madushan Dilhara Jayatissa;Oh, Min Chang;Park, Jeong Eon;Shilnikova, Kristina;Na, Soo-Young;Jeong, Seung Uk;Boo, Sun-Jin;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.315-320
    • /
    • 2017
  • We investigated the role of autophagy in SNUC5/5-FUR, 5-fluorouracil (5-FU) resistant SNUC5 colon cancer cells. SNUC5/5-FUR cells exhibited low level of autophagy, as determined by light microscopy, confocal microscopy, and flow cytometry following acridine orange staining, and the decreased level of GFP-LC3 puncta. In addition, expression of critical autophagic proteins such as Atg5, Beclin-1 and LC3-II and autophagic flux was diminished in SNUC5/5-FUR cells. Whereas production of reactive oxygen species (ROS) was significantly elevated in SNUC5/5-FUR cells, treatment with the ROS inhibitor N-acetyl cysteine further reduced the level of autophagy. Taken together, these results indicate that decreased autophagy is linked to 5-FU resistance in SNUC5 colon cancer cells.

Ataxia-Telangiectasia Mutated Is Involved in Autolysosome Formation

  • Mihwa Hwang;Dong Wha Jun;Bo Ram Song;Hanna Shim;Chang-Hun Lee;Sunshin Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권5호
    • /
    • pp.559-565
    • /
    • 2023
  • Ataxia-telangiectasia mutated (ATM), a master kinase of the DNA damage response (DDR), phosphorylates a multitude of substrates to activate signaling pathways after DNA double-strand breaks (DSBs). ATM inhibitors have been evaluated as anticancer drugs to potentiate the cytotoxicity of DNA damage-based cancer therapy. ATM is also involved in autophagy, a conserved cellular process that maintains homeostasis by degrading unnecessary proteins and dysfunctional organelles. In this study, we report that ATM inhibitors (KU-55933 and KU-60019) provoked accumulation of autophagosomes and p62 and restrained autolysosome formation. Under autophagy-inducing conditions, the ATM inhibitors caused excessive autophagosome accumulation and cell death. This new function of ATM in autophagy was also observed in numerous cell lines. Repression of ATM expression using an siRNA inhibited autophagic flux at the autolysosome formation step and induced cell death under autophagy-inducing conditions. Taken together, our results suggest that ATM is involved in autolysosome formation and that the use of ATM inhibitors in cancer therapy may be expanded.

Stem cell-secreted 14,15-epoxyeicosatrienoic acid rescues cholesterol homeostasis and autophagic flux in Niemann-Pick-type C disease

  • Kang, Insung;Lee, Byung-Chul;Lee, Jin Young;Kim, Jae-Jun;Sung, Eun-Ah;Lee, Seung Eun;Shin, Nari;Choi, Soon Won;Seo, Yoojin;Kim, Hyung-Sik;Kang, Kyung-Sun
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.8.1-8.14
    • /
    • 2018
  • We previously demonstrated that the direct transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the dentate gyrus ameliorated the neurological symptoms of Niemann-Pick type C1 (NPC1)-mutant mice. However, the clinical presentation of NPC1-mutant mice was not fully understood with a molecular mechanism. Here, we found 14,15-epoxyeicosatrienoic acid (14,15-EET), a cytochrome P450 (CYP) metabolite, from hUCB-MSCs and the cerebella of NPC1-mutant mice and investigated the functional consequence of this metabolite. Our screening of the CYP2J family indicated a dysregulation in the CYP system in a cerebellar-specific manner. Moreover, in Purkinje cells, CYP2J6 showed an elevated expression level compared to that of astrocytes, granule cells, and microglia. In this regard, we found that one CYP metabolite, 14,15-EET, acts as a key mediator in ameliorating cholesterol accumulation. In confirming this hypothesis, 14,15-EET treatment reduced the accumulation of cholesterol in human NPC1 patient-derived fibroblasts in vitro by suppressing cholesterol synthesis and ameliorating the impaired autophagic flux. We show that the reduced activity within the CYP system in the cerebellum could cause the neurological symptoms of NPC1 patients, as 14,15-EET treatment significantly rescued cholesterol accumulation and impaired autophagy. We also provide evidence that the intranasal administration of hUCB-MSCs is a highly promising alternative to traumatic surgical transplantation for NPC1 patients.

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun Yang;Soo-Bin Nam;Minsu Jang;Junsoo Park;Ga-Eun Lee;Yong-Yeon Cho;Byeong-Churl Jang;Cheol-Jung Lee;Jong-Soon Choi
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.337-346
    • /
    • 2023
  • Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

인체 구강암 세포주에서 Docosahexaenoic acid에 의한 세포독성 기전 (Cytotoxic Mechanism of Docosahexaenoic Acid in Human Oral Cancer Cells)

  • 홍태화;김훈;신소연;;정소연;임현;윤동혁;정기은;이명렬;박종일;권기량;박승길;황병두;임규
    • 생명과학회지
    • /
    • 제23권5호
    • /
    • pp.689-697
    • /
    • 2013
  • 오메가-3 지방산은 많은 암에서 세포독성을 나타낸다고 보고 되어 왔으나 구강암에 대한 연구는 전혀 없다. 이에 본 연구에서는 구강암세포에서 오메가-3 지방산 중 DHA의 세포독성 기전을 규명하여 다음과 같은 결과를 얻었다. DHA는 구강암 세포주 SCC-4 및 SCC-9의 증식을 농도 의존적으로 억제하였으며, FACS 분석, TUNEL assay 및 PARP cleavage 등에 의해 자가사멸을 유도함이 확인 되었다. 또한 DHA는 LC-3II 단백증가, GFP-LC-3 dot 형성 및 autophagic flux assay 등에 의해 자가포식도 유도됨이 규명되었다. SCC-9 세포에서 AMPK의 인산화는 DHA 에 의해 증가 하였으나, p-$AKT^{Thr308}$, p-$AKT^{Ser473}$ 및 mTOR단백양은 감소하였다. 이상의 결과로 DHA는 구강암세포에서 AMPK 활성증가 및 AKT 억제에 통한 mTOR 신호경로 차단에 따른 자가사멸 및 자가포식에 의해 세포독성을 나타낼 수 있음을 시사하며, 따라서 DHA는 구강암의 예방 및 치료에 유용하게 사용될 수 있으리라 생각된다.

Therapeutic implication of autophagy in neurodegenerative diseases

  • Rahman, Md. Ataur;Rhim, Hyewhon
    • BMB Reports
    • /
    • 제50권7호
    • /
    • pp.345-354
    • /
    • 2017
  • Autophagy, a catabolic process necessary for the maintenance of intracellular homeostasis, has recently been the focus of numerous human diseases and conditions, such as aging, cancer, development, immunity, longevity, and neurodegeneration. However, the continued presence of autophagy is essential for cell survival and dysfunctional autophagy is thought to speed up the progression of neurodegeneration. The actual molecular mechanism behind the progression of dysfunctional autophagy is not yet fully understood. Emerging evidence suggests that basal autophagy is necessary for the removal of misfolded, aggregated proteins and damaged cellular organelles through lysosomal mediated degradation. Physiologically, neurodegenerative disorders are related to the accumulation of amyloid ${\beta}$ peptide and ${\alpha}-synuclein$ protein aggregation, as seen in patients with Alzheimer's disease and Parkinson's disease, respectively. Even though autophagy could impact several facets of human biology and disease, it generally functions as a clearance for toxic proteins in the brain, which contributes novel insight into the pathophysiological understanding of neurodegenerative disorders. In particular, several studies demonstrate that natural compounds or small molecule autophagy enhancer stimuli are essential in the clearance of amyloid ${\beta}$ and ${\alpha}-synuclein$ deposits. Therefore, this review briefly deliberates on the recent implications of autophagy in neurodegenerative disorder control, and emphasizes the opportunities and potential therapeutic application of applied autophagy.

Differential Sensitivity of Wild-Type and BRAF-Mutated Cells to Combined BRAF and Autophagy Inhibition

  • Yeom, Hojin;Hwang, Sung-Hee;Han, Byeal-I;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제29권4호
    • /
    • pp.434-444
    • /
    • 2021
  • BRAF inhibitors are insufficient monotherapies for BRAF-mutated cancer; therefore, we investigated which inhibitory pathway would yield the most effective therapeutic approach when targeted in combination with BRAF inhibition. The oncogenic BRAF inhibitor, PLX4720, increased basal autophagic flux in BRAF-mutated cells compared to wild-type (WT) BRAF cells. Interestingly, early autophagy inhibition improved the effectiveness of PLX4720 regardless of BRAF mutation, whereas late autophagy inhibition did not. Although ATG5 knockout led to PLX4720 resistance in both WT and BRAF-mutated cells, the MEK inhibitor trametinib exhibited a synergistic effect on PLX4720 sensitivity in WT BRAF cells but not in BRAF-mutated cells. Conversely, the prolonged inhibition of endoplasmic reticulum (ER) stress reduced basal autophagy in BRAF-mutated cells, thereby increasing PLX4720 sensitivity. Taken together, our results suggest that the combined inhibition of ER stress and BRAF may simultaneously suppress both pro-survival ER stress and autophagy, and may therefore be suitable for treatment of BRAF-mutated tumors whose autophagy is increased by chronic ER stress. Similarly, for WT BRAF tumors, therapies targeting MEK signaling may be a more effective treatment strategy. Together, this study presents a rational combination treatment strategy to improve the efficacy of BRAF inhibitors depending on BRAF mutation status.