DOI QR코드

DOI QR Code

Stem cell-secreted 14,15-epoxyeicosatrienoic acid rescues cholesterol homeostasis and autophagic flux in Niemann-Pick-type C disease

  • Kang, Insung (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Byung-Chul (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Jin Young (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Jae-Jun (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Sung, Eun-Ah (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Seung Eun (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Shin, Nari (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Choi, Soon Won (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University) ;
  • Seo, Yoojin (Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital) ;
  • Kim, Hyung-Sik (Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital) ;
  • Kang, Kyung-Sun (Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University)
  • Received : 2018.04.03
  • Accepted : 2018.07.18
  • Published : 2018.11.30

Abstract

We previously demonstrated that the direct transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the dentate gyrus ameliorated the neurological symptoms of Niemann-Pick type C1 (NPC1)-mutant mice. However, the clinical presentation of NPC1-mutant mice was not fully understood with a molecular mechanism. Here, we found 14,15-epoxyeicosatrienoic acid (14,15-EET), a cytochrome P450 (CYP) metabolite, from hUCB-MSCs and the cerebella of NPC1-mutant mice and investigated the functional consequence of this metabolite. Our screening of the CYP2J family indicated a dysregulation in the CYP system in a cerebellar-specific manner. Moreover, in Purkinje cells, CYP2J6 showed an elevated expression level compared to that of astrocytes, granule cells, and microglia. In this regard, we found that one CYP metabolite, 14,15-EET, acts as a key mediator in ameliorating cholesterol accumulation. In confirming this hypothesis, 14,15-EET treatment reduced the accumulation of cholesterol in human NPC1 patient-derived fibroblasts in vitro by suppressing cholesterol synthesis and ameliorating the impaired autophagic flux. We show that the reduced activity within the CYP system in the cerebellum could cause the neurological symptoms of NPC1 patients, as 14,15-EET treatment significantly rescued cholesterol accumulation and impaired autophagy. We also provide evidence that the intranasal administration of hUCB-MSCs is a highly promising alternative to traumatic surgical transplantation for NPC1 patients.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Patterson, M. Niemann-Pick disease type C. https://www.ncbi.nlm.nih.gov/books/NBK1296/ (2013).
  2. Ko, D. C., Gordon, M. D., Jin, J. Y. & Scott, M. P. Dynamic movements of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late endocytic events. Mol. Biol. Cell 12, 601-614 (2001). https://doi.org/10.1091/mbc.12.3.601
  3. Sevin, M. et al. The adult form of Niemann-Pick disease type C. Brain 130, 120-133 (2007).
  4. Vanier, M. T. Complex lipid trafficking in Niemann-Pick disease type C. J. Inherit. Metab. Dis. 38, 187-199 (2015). https://doi.org/10.1007/s10545-014-9794-4
  5. Peake, K. B. & Vance, J. E. Normalization of cholesterol homeostasis by 2-hydroxypropyl-${\beta}$-cyclodextrin in neurons and glia from Niemann-Pick C1 (NPC1)-deficient mice. J. Biol. Chem. 287, 9290-9298 (2012). https://doi.org/10.1074/jbc.M111.326405
  6. Kim, S.-J., Lee, B.-H., Lee, Y.-S. & Kang, K.-S. Defective cholesterol traffic and neuronal differentiation in neural stem cells of Niemann-Pick type C disease improved by valproic acid, a histone deacetylase inhibitor. Biochem. Biophys. Res. Commun. 360, 593-599 (2007). https://doi.org/10.1016/j.bbrc.2007.06.116
  7. Bae, J.-s et al. Neuroglial activation in Niemann-Pick Type C mice is suppressed by intracerebral transplantation of bone marrow-derived mesenchymal stem cells. Neurosci. Lett. 381, 234-236 (2005). https://doi.org/10.1016/j.neulet.2005.02.029
  8. Lee, H., Kang, J. E., Lee, J. K., Bae, J.-s & Jin, H. K. Bone-marrow-derived mesenchymal stem cells promote proliferation and neuronal differentiation of Niemann-Pick type C mouse neural stem cells by upregulation and secretion of CCL2. Hum. Gene. Ther. 24, 655-669 (2013). https://doi.org/10.1089/hum.2013.001
  9. Lee, H. et al. Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-Pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells 28, 821-831 (2010). https://doi.org/10.1002/stem.401
  10. Seo, Y. et al. Human umbilical cord blood-derived mesenchymal stem cells protect against neuronal cell death and ameliorate motor deficits in Niemann-Pick type C1 mice. Cell Transplant. 20, 1033-1047 (2011). https://doi.org/10.3727/096368910X545086
  11. Danielyan, L. et al. Intranasal delivery of cells to the brain. Eur. J. Cell Biol. 88, 315-324 (2009). https://doi.org/10.1016/j.ejcb.2009.02.001
  12. Danielyan, L. et al. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuv. Res. 14, 3-16 (2011). https://doi.org/10.1089/rej.2010.1130
  13. Iliff, J. J. et al. Epoxyeicosanoid signaling in CNS function and disease. Prostag. Other Lipid Mediat. 91, 68-84 (2010). https://doi.org/10.1016/j.prostaglandins.2009.06.004
  14. Park, S.-B. et al. bFGF enhances the IGFs-mediated pluripotent and differentiation potentials in multipotent stem cells. Growth Factors 27, 425-437 (2009). https://doi.org/10.3109/08977190903289875
  15. Seo, K.-W. et al. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs). Biochem. Biophys. Res. Commun. 384, 120-125 (2009). https://doi.org/10.1016/j.bbrc.2009.04.094
  16. Seo, Y. et al. Human umbilical cord blood-derived mesenchymal stem cells protect against neuronal cell death and ameliorate motor deficits in Niemann-Pick type C1 mice. Cell Transplant. 20, 1033-1047 (2011). https://doi.org/10.3727/096368910X545086
  17. Voikar, V., Rauvala, H. & Ikonen, E. Cognitive deficit and development of motor impairment in a mouse model of Niemann-Pick type C disease. Behav. Brain Res. 132, 1-10 (2002). https://doi.org/10.1016/S0166-4328(01)00380-1
  18. Sarna, J. R. et al. Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J. Comp. Neurol. 456, 279-291 (2003). https://doi.org/10.1002/cne.10522
  19. Vanier, M. T. & Millat, G. Niemann-Pick disease type C. Clin. Genet. 64, 269-281 (2003). https://doi.org/10.1034/j.1399-0004.2003.00147.x
  20. Chen, G. et al. CYP2J2 overexpression attenuates nonalcoholic fatty liver disease induced by high-fat diet in mice. Am. J. Physiol.Endocrinol Metab. 308, E97-E110 (2015). https://doi.org/10.1152/ajpendo.00366.2014
  21. Chen, F. W., Gordon, R. E. & Ioannou, Y. A. NPC1 late endosomes contain elevated levels of non-esterified ('free') fatty acids and an abnormally glycosylated form of the NPC2 protein. Biochem. J. 390, 549-561 (2005). https://doi.org/10.1042/BJ20050236
  22. Goldstein, J. L., Rawson, R. B. & Brown, M. S. Mutantmammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch. Biochem. Biophys. 397, 139-148 (2002). https://doi.org/10.1006/abbi.2001.2615
  23. Sarkar, S. et al. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep. 5, 1302-1315 (2013). https://doi.org/10.1016/j.celrep.2013.10.042
  24. Murase, S.-i & Horwitz, A. F. Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J. Neurosci. 22, 3568-3579 (2002). https://doi.org/10.1523/JNEUROSCI.22-09-03568.2002
  25. Donega, V. et al. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Exp. Neurol. 261, 53-64 (2014). https://doi.org/10.1016/j.expneurol.2014.06.009
  26. Walkley, S. U. & Suzuki, K. Consequences of NPC1 and NPC2 loss of function in mammalian neurons. BBA Mol. Cell Biol. 1685, 48-62 (2004). https://doi.org/10.1016/j.bbalip.2004.08.011
  27. Vanier, M. T. Niemann-Pick disease type C. Orphanet J. Rare Dis. 5, 16 (2010). https://doi.org/10.1186/1750-1172-5-16
  28. Prockop, D. "Stemness" does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin. Pharmacol. Ther. 82, 241-243 (2007). https://doi.org/10.1038/sj.clpt.6100313
  29. Iso, Y. et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem. Bioph. Res. Commun. 354, 700-706 (2007). https://doi.org/10.1016/j.bbrc.2007.01.045
  30. Lee, H. et al. Pathological roles of the VEGF/SphK pathway in Niemann-Pick type C neurons. Nat. Commun. 5, 5514 (2014). https://doi.org/10.1038/ncomms6514
  31. Buczynski, M. W., Dumlao, D. S. & Dennis, E. A. Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J. Lipid Res. 50, 1015-1038 (2009). https://doi.org/10.1194/jlr.R900004-JLR200
  32. Liu, M., Hurn, P. & Alkayed, N. Cytochrome P450 in neurological disease. Curr. Drug Metab. 5, 225-234 (2004). https://doi.org/10.2174/1389200043335540
  33. Zeldin, D. C. Epoxygenase pathways of arachidonic acid metabolism. J. Biol. Chem. 276, 36059-36062 (2001). https://doi.org/10.1074/jbc.R100030200
  34. Schuck, R. N. et al. The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease. PLoS ONE 9, e110162 (2014). https://doi.org/10.1371/journal.pone.0110162
  35. Nicoli, E.-R. et al. Defective cytochrome P450-catalysed drug metabolism in Niemann-Pick Type C disease. PLoS ONE 11, e0152007 (2016). https://doi.org/10.1371/journal.pone.0152007
  36. Michaelis, U. R., Xia, N., Barbosa-Sicard, E., Falck, J. R. & Fleming, I. Role of cytochrome P450 2C epoxygenases in hypoxia-induced cell migration and angiogenesis in retinal endothelial cells. Invest. Ophthalmol. Vis. Sci. 49, 1242-1247 (2008). https://doi.org/10.1167/iovs.07-1087
  37. Terashvili, M., Sarkar, P., Nostrand, M., Falck, J. & Harder, D. The protective effect of astrocyte-derived 14, 15-epoxyeicosatrienoic acid on hydrogen peroxideinduced cell injury in astrocyte-dopaminergic neuronal cell line co-culture. Neuroscience 223, 68-76 (2012). https://doi.org/10.1016/j.neuroscience.2012.07.045
  38. Zhang, S. et al. CYP2J2 overexpression ameliorates hyperlipidemia via increased fatty acid oxidation mediated by the AMPK pathway. Obesity 23, 1401-1413 (2015). https://doi.org/10.1002/oby.21115
  39. Ma, J. et al. Activation of JNK/c-Jun is required for the proliferation, survival, and angiogenesis induced by EET in pulmonary artery endothelial cells. J. Lipid Res. 53, 1093-1105 (2012). https://doi.org/10.1194/jlr.M024398
  40. Samokhvalov, V. et al. Epoxyeicosatrienoic acids protect cardiac cells during starvation by modulating an autophagic response. Cell Death Dis. 4, e885 (2013). https://doi.org/10.1038/cddis.2013.418