• 제목/요약/키워드: autonomous robot

Search Result 903, Processing Time 0.031 seconds

Teleoperation System of a Mobile Robot over the Internet (인터넷을 이용한 이동로봇의 원격 운용 시스템)

  • Park, Taehyun;Gang, Geun-Taek;Lee, Wonchang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.270-274
    • /
    • 2002
  • This paper presents a teleoperation system that combines computer network and an autonomous mobile robot. We control remotely an autonomous mobile robot with vision over the Internet to guide it under unknown environments in the real time. The main feature of this system is that local operators need a web browser and a computer connected to the communication network and so they can command the robot in a remote location through the home page. The hardware architecture of this system consists of an autonomous mobile robot, workstation, and local computers. The software architecture of this system includes the client part for the user interface and robot control as well as the server part for communication between users and robot. The server and client systems are developed using Java language which is suitable to internet application and supports multi-platform. Furthermore. this system offers an image compression method using JPEG concept which reduces large time delay that occurs in network during image transmission.

A Study on the Autonomous Navigation of Mobile Robot using Adaptive Fuzzy Control (적응 퍼지 제어를 이용한 이동 로보트의 자율 주행에 관한 연구)

  • 오준섭;박진배최윤호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.433-436
    • /
    • 1998
  • The objective of this paper is to design a adaptive fuzzy controller for autonomous navigation of mobile robot. The adaptive fuzzy controller has an advantage in data processing time and convergence speed. The basic idea of control is to induct membership function and fuzzy inference rules and to scale inducted membership function to suitable robot state. The adaptive fuzzy control method is applied to mobile robot and the simulation results show the effectiveness of our controller.

  • PDF

An Algorithm of Autonomous Navigation for Mobile Robot using Vision Sensor and Ultrasonic Sensor (비전 센서와 초음파 센서를 이용한 이동 로봇의 자율 주행 알고리즘)

  • Lee, Jae-Kwang;Park, Jong-Hun;Heo, Uk-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.19-22
    • /
    • 2003
  • This paper proposes an algorithm for navigation of an autonomous mobile robot with vision sensor. For obstacle avoidance, we used a curvature trajectory method. Using this method, translational and rotational speeds are controlled independently and the mobile robot traces a smooth curvature trajectory that consists of circle trajectories to a target point. While trying to avoid obstacles, the robot fan be goal-directed using curvature trajectory.

  • PDF

A Study on Autonomous Driving Mobile Robot by using Intelligent Algorithm

  • Seo, Hyun-Jae;Kim, Hyo-Jae;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.543-547
    • /
    • 2005
  • In this paper, we designed a intelligent autonomous driving robot by using Fuzzy algorithm. The object of designed robot is recognition of obstacle, avoidance of obstacle and safe arrival. We append a suspension system to auxiliary wheel for improvement in stability and movement. The designed robot can arrive at destination where is wanted to go by the old and the weak and the handicapped at indoor hospital and building.

  • PDF

Development of Autonomous Surface Robot for Marine Fire Safety (해양 소방 안전을 위한 자율수상로봇 개발)

  • Jeong, Jinseok;Sa, Youngmin;Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.138-142
    • /
    • 2018
  • The marine industry is rapidly developing as a result of the increase in various needs in the marine environment. In addition, accidents involving ship fires and explosions and the resulting casualties are increasing. Generally, manpower and safety problems exist in fire fighting. A fire fighter in the form of an autonomous surface robot would be ideal for marine fire safety, because it has no manpower and safety problems. Therefore, an autonomous surface robot with the abilities of fire recognition and tracking, nozzle selection, position and attitude control, and fire fighting was developed and is discussed in this paper. The test and evaluation results of this robot showed the possibility of real-size applications and the need for additional studies.

Autonomous Navigation Motion Control of Mobile Robots using Hybrid System Control Method (하이브리드 시스템 제어 방법을 이용한 이동로봇의 자율 추행 동작제어)

  • Lee, Yong-Mi;Im, Mi-Seop;Im, Jun-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.5
    • /
    • pp.182-189
    • /
    • 2002
  • This paper presents a framework of hybrid dynamic control systems for the motion control of wheeled mobile robot systems with nonholonomic constraints. The hybrid control system has the 3-layered hierarchical structure: digital automata for the higher process, mobile robot system for the lower process, and the interface as the interaction process between the continuous dynamics and the discrete dynamics. In the hybrid control architecture of mobile robot, the continuous dynamics of mobile robots are modeled by the switched systems. The abstract model and digital automata for the motion control are developed. In high level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot in low level are specified in the abstracted motions. The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments

Metadata design and system development for autonomous data survey using unmanned patrol robots (무인순찰로봇 활용 데이터 기록 자동화를 위한 메타데이터 정의 및 시스템 구축)

  • Jung, Namcheol;Lee, Giryun;Nho, Hyunju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.267-268
    • /
    • 2023
  • Unmanned patrol robots are currently being developed for autonomous data survey in construction sites. As the amount of data acquired by robots increases, it is important to utilize proper metadata and system to manage data flow. In this study, we developed three materials, metadata design, robot system and web system, in the purpose of automating construction site data survey using unmanned patrol robots. The metadata was mainly designed to represent when and where raw data was acquired. To identify the location of data acquired, localization data from SLAM algorithm was converted to suit the construction drawings. The robot system and web system were developed to generate, store and parse the raw data and metadata automatically. The materials developed in this study was adopted to Boston Dynamics SPOT, a quadruped robot. Autonomous data survey of 360-picture and environment sensor was tested in two construction sites and the robot worked as intended. As a further study, development on the autonomous data survey to improve the convenience and productivity will be continued.

  • PDF

Experimental research on the autonomous mobile robotics

  • Yuta, Shin'ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.17-17
    • /
    • 1996
  • An experimental research is a useful approach for realizing autonomous mobile robots to work in real environment. We are developing an autonomous mobile robot platform named "Yamabico" as a tool for experimental real world robotics research. The architecture of Yamabico is based on the concept of centralized decision making and functionally modularization. Yamabico robot has two level structure with behavior and function levels, and its hardware and software are functionally distributed for providing incremental development and good maintenancibility. We are using many Yamabico robots in our laboratory to realize the robust navigation technology for autonomous robots. The methodology for experimental and task-oriented approach of mobile robotics will be presented. And some experimental results of real world navigation in indoor and outdoor environment will be shown. be shown.

  • PDF

A Navigation Algorithm for Autonomous Mobile Robots using Artificial Immune Networks and Fuzzy Systems

  • Kim, Yang-Hyun;Lee, Dong-Je;Lee, Min-Jung;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.134.6-134
    • /
    • 2001
  • The purpose of navigation algorithm is to reach a given target point without collision with obstacles while an autonomous mobile robot is navigating. To achieve a safe navigation, this paper presents an effective navigation algorithm for the autonomous mobile robot equipped with ultrasonic sensors in unknown environments. The proposed navigation algorithm consists of an obstacle-avoidance behavior, a target-reaching behavior and a fuzzy-based decision maker. In the obstacle-avoidance behavior and the target-reaching behavior, artificial immune networks are used to select a proper steering angle, make the autonomous mobile robot avoid obstacles and approach a given target point. The decision maker using fuzzy inference systems weights the steering angles selected ...

  • PDF

The Trace Algorithm of Mobile Robot Using Neural Network (신경 회로망을 이용한 Mobile Robot의 추종 알고리즘)

  • 남선진;김성현;김성주;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.267-270
    • /
    • 2001
  • In this paper, we propose the self-autonomous algorithm for mobile robot system. The proposed mobile robot system which is teamed by learning with the neural networks can trace the target at the same distances. The mobile robot can evaluate the distance between robot and target with ultrasonic sensors. By teaming the setup distance, current distance and command velocity, the robot can do intelligent self-autonomous drive. We use the neural network and back-propagation algorithm as a tool of learning. As a result, we confirm the ability of tracing the target with proposed mobile robot.

  • PDF