• Title/Summary/Keyword: automotive structural adhesive

Search Result 21, Processing Time 0.022 seconds

Effect of Acrylic Acid Contents and Inorganic Fillers on Physical Properties of Acrylic Pressure Sensitive Adhesive Tape by UV Curing (아크릴산 함량 및 무기물 충전제가 UV 경화형 아크릴 점착테이프의 물성에 미치는 영향)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Acrylic pressure sensitive adhesive (PSA) tapes were used for the automotive, the electrical and the electronic industries and the display module junction. In this study, the manufacture of high-strength structural tape used 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AAC), and UV irradiation for photo-polymerization, and the semi-structural properties of acrylic PSA tape with the AAC content and inorganic filler $SiO_2$ content were investigated. The initial adhesion strength was lowered by the rigidity of molecule chains due to the use of AAC, and the adhesion strength increased with increasing wetting time. The wetability, contact angle, and SEM images of PSA tapes with various contents of AAC were determined. Without filler, the peel strength and dynamic shear strength of PSA tape showed inverse correlation but the peel strength and dynamic shear strength increased with increasing filler content. From these correlations the PSA tapes could be optimized for the applications requiring high performance.

Enhancing Structural Integrity of Composite Sandwich Beams Using Viscoelastic Bonding with Tapered Epoxy Reinforcement

  • Rajesh Lalsing Shirale;Surekha Anil Bhalchandra
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.125-137
    • /
    • 2024
  • Composite laminates are used in a wide range of applications including defense, automotive, aviation and aerospace, marine, wind energy, and recreational sporting goods. These composite beams still exhibit problems such as buckling, local deformations, and interlaminar delamination. To overcome these drawbacks, a novel viscoelastic autoclave bonding with tapered epoxy reinforcement polyurethane films is proposed. In existing laminates, compression face wrinkling and interlaminar delamination is caused in the sandwich beam. The unique viscoelastic autoclave spunbond interlayer bonding is designed to prevent face wrinkling and absorb and distribute stresses induced by external loads, thereby eliminating interlaminar delamination in the sandwich beam. Also, the existing special reinforcement causes stress concentrations, and the core is not effectively connected, which directly affects the stiffness of the beam. To address this, a novel tapered epoxy polyurethane reinforcement adhesive film is proposed, whose reinforcement thickness gradually tapers as it enters the core material. This minimizes stress concentrations at the interface, preventing excessive adhesive squeeze-out during the bonding process, and improves the stiffness of the beam. Results indicate the proposed model avoids the formation of micro cracks, interlaminar delamination, buckling, and local deformations, and effectively improves the stiffness of the beam.

Fracture Behaviour Analysis of the Crack at the Specimen with the Type of Mode I Composed of the Bonded Carbon Fiber Reinforced Plastic (접합된 CFRP로 구성된 Mode I형 시험편 크랙의 파괴 거동 해석)

  • Lee, Jung-Ho;Cho, Jae-Ung;Cheon, Seong-Sik;Kook, Jeong Han
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.356-360
    • /
    • 2015
  • In this paper, the carbon fiber reinforced plastic is processed as the double cantilever beam in order to estimate the fracture behavior of composite and is carried out with the static analysis as the mode I. The specimen sizes are 25 mm, 30 mm, 35 mm and 40 mm. And the material property is used with carbon. As the analysis result of mode I, the adhesive part is detached latest by the small force at the specimen thickness of 25 mm. The largest force is happened at the specimen thickness of 40 mm. The defection of the adhesive interface is shown slowest at the displacement of 9.75 mm at the specimen thickness of 25 mm. And the defection is shown quickest at the displacement of 7.82 mm at the specimen thickness of 40 mm. This defection is due to the fracture of specimen. The result of this study on the defection of the adhesive interface and the reaction force due to this defection is thought to be contributed to the safe structural design of the carbon fiber reinforced plastic.

Investigating the Tensile-Shear of Dissimilar Materials Joined Using the Hybrid SPR Technique (Hybrid SPR 접합을 적용한 이종소재 인장전단에 관한 연구)

  • Yu, Kwan-jong;Choi, Du-bok;Kim, Jae-yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.33-39
    • /
    • 2020
  • Self-piercing rivets are often used in the automotive industry, among other industries, as mechanical components to join multiple materials such as aluminum alloys. Self-piercing rivets have a strong sealing property, although there is considerable scope for their performance improvement. In this study, to enhance the performance of self-piercing rivets, the hybrid self-piercing riveting (SPR) technique, using the existing SPR and structural adhesive, was proposed. Moreover, heterogeneous material specimens subjected to the hybrid SPR technique were manufactured and tested. The joint strength of the test pieces of different materials was evaluated through finite element analyses.

DEVELOPMENT OF THE JOINING PROCESSES IN A GLOBAL PERSPECTIVE

  • Pekari, Bertil
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.1-14
    • /
    • 2002
  • There is a continuous development of the most common welding processes like MMA, MIG/MAG, PAW and SAW. At the same time there is a conversion from stick electrodes to solid and cored wires with an increased productivity as a result. In parallel with these changes new processes are introduced and implemented. The number of Friction Stir Welding installations is starting to grow fast Hybrid laser welding has probably made a technical break through. The Magnetic Pulse Welding process is taking off. The different mechanical joining methods; clinching and self-piercing riveting; must not be forgotten. Structural adhesive is another method to consider.

  • PDF

Fracture Characteristic of Double Cantilever Beam Specimen Using Lightweight Material at Sliding Mode (미끄러짐 모드에서의 경량 재료를 이용한 이중외팔보 시험편의 파손 특성)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.16-23
    • /
    • 2021
  • The fracture characteristic of the bonded interface under the application of a sliding load to a double cantilevered specimen manufactured using lightweight material was examined. Inhomogeneously bonded materials such as Al6061-T6, CFRP, and CFRP-Al were employed. In the experiment, the specimen was loaded on both directions by applying a shearing load to the bonding interface. The experimentally obtained stress, specific strength and energy release rate values were examined. CFRP exhibited excellent specific strength. The experimental results demonstrated that the inhomogeneous bonded material CFRP-Al exhibited an overall high performance in comparison with the single materials.

Aluminum alloys and their joining methods (알루미늄 합금과 그 접합 방법)

  • Jung, Do-hyun;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.9-17
    • /
    • 2018
  • Aluminum (Al) and its alloys have been used widely in a variety of industries such as structural, electronic, aerospace, and particularly automotive industries due to their lightweight characteristic, outstanding ductility, formability, high oxidation and corrosion resistance, and high thermal and electrical conductivity. Al have different kinds of alloys according to the various additional elements system and they should be selected properly depending on their effectiveness and suitability for their particular purpose. The major elements for Al alloys are silicon (Si), magnesium (Mg), manganese (Mn), copper (Cu), and zinc (Zn). In order for Al alloys to use for each industry, it is necessary to study of Al to Al joining and/or the Al to dissimilar materials joining to combine the individual parts into one. Many studies on joining technologies about Al to Al and Al to dissimilar materials have been performed such as press joining, bolted joint, welding, soldering, riveting, adhesive bonding, and brazing. This study reviews a variety of Al alloys and their joining method including its principles and properties with recent trends.

Solid Lubrication Optimization and Structural Design of 17cc Automotive Compressor (17cc급 자동차용 압축기의 고체윤활 최적화 및 구조 설계에 관한 연구)

  • Yang, Yong-Kun;Qin, Zhen;Choi, Yeo-Han;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.56-61
    • /
    • 2020
  • Fuel economy has always been a major issue in the automobile industry, especially owing to the associated environmental concerns. It is widely known that only 5-20% of the energy generated by automobiles running on internal combustion engine engines is used as power, while the rest is consumed because of friction between components. The main components of the reciprocating piston type compressor used in vehicles, such as the shaft, swash plate, piston, and cylinder, cause severe energy loss owing to frictional contact between each other. The wear contact between the main shaft and the other components is particularly severe. Most quality issues arise owing to the sticking phenomenon that occurs between these parts. In this study, a coating solution to reduce friction is prepared by mixing adhesive solid lubricant, organic binder-polyadimide, inorganic binder (Binder), and graphite in four different ratios, and the best combination is determined.

An Investigation on the Behavior of Fracture Mechanics as the Type of Mode I at Specimen Bonded with Tapered Carbon Fiber Reinforced Plastic (경사진 CFRP로 접합된 시험편에서의 Mode 1 형 파괴역학적 거동에 관한 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung;Cheon, Seong Sik
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.85-89
    • /
    • 2016
  • This paper aims at estimating the fracture behavior at the bonded part of composite material. CFRP is manufactured as the type of TDCB. The static analysis of Mode 1 due to the configuartion factor of m is carried out. Four kinds of specimens have the configuartion factor(m) of 2, 2.5, 3 and 3.5. As the study result, the displacements at specimens are shown to be similar each other in these four cases. At m of 3.5, the reaction force becomes highest as 412 N and is shown to be improved as much as 14% by comparing m of 2. The data on defection of the bonded interface and reaction force are thought to be contributed to the structural design of CFRP and the safe design.

Cure Monitoring of Epoxy Resin by Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 에폭시 수지의 경화도 모니터링)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.