• Title/Summary/Keyword: automotive control

Search Result 2,031, Processing Time 0.03 seconds

Development of the Air Floating Conveyor System for the Large Glass Sheet (대평판 글라스 이송용 공기 부상 이송장치의 개발)

  • Lee, Tae Geol;Yu, Jin Sik;Jung, Hyo Jae;Kim, Jong-Hyeong;Kim, Joon Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.635-642
    • /
    • 2013
  • We have prepared a DEMO conveyor device for conveying a large 8G class glass sheet using ahorizontal air-cushion system. This device consists of the body frame and the driving frame that are combined to realize a frame for conveying glass without any contact.The driving frame comprises an air flotation table (bed), drive roller supported at both ends, and ASU. Part of the ASU serves to control the airflow as the chamber consists of a porous pad and fan. Fiber filters replace the porous pad and axial fans serve as an air compressor. In addition, to determine the appropriate glass levitation from the air table, this study examined the design specifications of the applied filter (discharge speed of HEPA and ULPA filters, and flow rate) as well as the height of the and the proper supporting roller height (14mm). Then, after adjusting the position of the ASU and the number of ASUs required to configure the UNIT air floating C/V, we analyzed the height and flatness of the glass and derived the appropriate layout (1140-mm distance between ASUs).

Characteristics of Thermal Efficiency with Changing Distances Between Tubes for Heat Exchanger (열교환기 관사이의 거리변화에 대한 열효율 특성)

  • Kim, Jong-Min;Lee, Jae-Park;Lee, Seung-Ro;Lee, Chang-Eon;Kum, Sung-Min
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.177-181
    • /
    • 2010
  • There are various types of heat exchanger by its purpose and usage, but the important thing is making smaller size of heat exchanger with increasing of the performance of heat exchanger. However, when a burner exists in front of a heat exchanger like boiler, the thermal efficiency of heat exchanger is not only important, but the characteristics of pollutant emission should be considered. Therefore, in this study, a circular tube type of heat exchanger in front of premixed burne, which has a shorter of flame length than that of non-premixed burner and can control $NO_x$ and CO emission by adjustment of equivalence ratio, was installed. Consequently, characteristics of $NO_x$ and CO emission and thermal efficiency of heat exchanger were studied with changing distances between tubes and equivalence ratio, experimentally.

A Case Study on Improvement of Field Training Coursework for Engineering Education - Comparison Korea with France (한국과 프랑스의 현장 실습 중심의 공학 교육 운영에 관한 사례 분석)

  • Kim, Hyeon-A;Hong, Chol-Ho;Kim, Byeong-Sam
    • Journal of Engineering Education Research
    • /
    • v.10 no.2
    • /
    • pp.5-18
    • /
    • 2007
  • This paper presents a concept of training coursework for engineers in cooperation with the industry combining system, comparing Korea with France. The students, after first two years in a university for the foundation/basic courses, will be centered in the industry, rather than at an academic institution, where field training engineering coursework will be offered in structured or capstone design(problem based learning) formats through the industry. This study on the improvement of the concept has several advantages including the followings ; 1) Industry hiring local-area students who have the potential to be long-term employees; 2) Industry's immediate access to employees with developing engineering skills; 3) On-the-job training reduced industry training costs after graduation; 4) More effective learning through observing complex operations; 5) Students and industry input for continuous improvement of the curriculum; 6) Greater amenability on the part of industry to actively participate in research and development; 7) Increasing in the flow of real research problems for engineering. Finally, the implications for student quality, accreditation, assessment of partnership, academic freedom, and fundraising for scholarships and researches are discussed briefly.

Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al

  • Oh, Chang-Sup;Woo, Sang-Woo;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.709-713
    • /
    • 2016
  • Grain morphology, phase stability and mechanical properties in binary Ti-Al alloys containing 43-52 mo1% Al have been investigated. Isothermal forging was used to control the grain sizes of these alloys in the range of 5 to $350{\mu}m$. Grain morphology and volume fraction of ${\alpha}_2$ phase were observed by optical metallography and scanning electron microscopy. Compressive properties were evaluated at room temperature, 1070 K, and 1270 K in an argon atmosphere. Work hardening is significant at room temperature, but it hardly took place at 1070 K and 1270 K because of dynamical recrystallization. The grain morphologies were determined as functions of aluminum content and processing conditions. The transus curve of ${\alpha}$ and ${\alpha}+{\gamma}$ shifted more to the aluminum-rich side than was the case in McCullough's phase diagram. Flow stress at room temperature depends strongly on the volume fraction of the ${\alpha}_2$ phase and the grain size, whereas flow stress at 1070 K is insensitive to the alloy composition or the grain size, and flow stress at 1270 K depends mainly on the grain size. The ${\alpha}_2$ phase in the alloys does not increase the proof stress at high temperatures. These observations indicate that improvement of both the proof stress at high temperature and the room temperature ductility should be achieved to obtain slightly Ti-rich TiAl base alloys.

u-IT Based Plant Green Growth Environment Management System (u-IT 기반의 그린 생장환경 관리 시스템)

  • Kim, Jong-Chan;Cho, Seung-Il;Ban, Kyeong-Jin;Kim, Chee-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1391-1396
    • /
    • 2011
  • A way to increase productivity in agriculture that is labor-centered industry is to graft IT technology. Today, many technologies in ubiquitous computing are deployed in all areas of society such as traffic control, automotive manufacturing, construction, defence, healthcare and clinical services. These IT technologies is gaining more attention as a fusion technology among traditional industries. To successfully build ubiquitous agriculture environment, it needs optimized core technology development for agriculture that includes sensor node H/W, middleware platform, routing protocol and agriculture environment application services. To achieve accurate botany growth environment management, we propose a green growth environment management system using environmental factor monitoring sensor and biological information sensors in greenhouse. By using our proposed system, it is expected to realize fusion complex agriculture technology with low cost.

Unmanned Water Treatment System Based on Five Senses Technology to Cope with Overloading of Customized Smart Water Grid Machines (스마트워터그리드 맞춤형 기계과부하시 오감기술을 이용한 무인 수처리 시스템에 관한 연구)

  • Kim, Jae-Yeol;You, Kwan-Jong;Jung, Yoon-Soo;Ahn, Tae-Hyoung;Lee, Hak-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.69-80
    • /
    • 2017
  • In or To use, manage, and preserve sustainable water resources for the current and future generations amid the threat of abnormal climate, it is necessary to establish a smart water grid system, the next-generation intelligent water management system. In this study, sensors, which make use of the five senses to watch, listen, and detect machine vibration, bearing temperature, machine operation sounds, current, voltage, and other symptoms that cannot be verified when the irrigation facilities are running, are used to establish various decision-making criteria appropriate to on-site situations. Based on such criteria, the unmanned conditions in the facilities were verified and analyzed. Existing technologies require on-site workers to check any defects caused by overloading of machines, which is the biggest constraining factor in the application of an unmanned control system for irrigation facilities. The new technology proposed in this study, on the other hand, allows for the unmanned analysis of the existence of machine vibration. This controls the decision-making process of any defect based on the analysis results, and necessary measures are taken automatically, resulting in improved reliability of the unmanned automation.

Study of Combustion Characteristics with Compression Ratio Change in Ultra-Lean LPG Direct Injection Engine (압축비 변화에 따른 초희박 직접분사식 LPG엔진의 연소특성 연구)

  • Cho, See Hyeon;Yoon, Jun Kyu;Park, Cheol Woong;Oh, Seung Mook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.837-844
    • /
    • 2014
  • Automotive manufacturers have recently developed various technologies for improving fuel economy and satisfying enhanced emission regulations. The ultra-lean direct injection engine is a promising technology because it has the advantage of improving thermal efficiency through the deliberate control of ignition. A conventional LPG engine has been redesigned to an ultra-lean-burn LPG direct injection engine in order to adopt combustion system of ultra-lean-burn. This study is aimed at investigating the effect of a change in the compression ratio on the performance and emission characteristics of a lean-burn LPG engine. The fuel consumption, heat release rate, combustion pressure, and emission characteristics are estimated depending on changing the effect of compression ratio. When the compression ratio is increased, it is difficult to improve the fuel consumption owing to an unstable combustion state, but the total hydrocarbon and nitrogen oxide emissions are reduced.

Characteristics of Combustion and Thermal Efficiency for Premixed Flat Plate Burner Using a Porous Media (다공성 소재 종류에 따른 예혼합 평판버너의 연소 및 열효율 특성에 관한 연구)

  • Kum, Sungmin;Yu, Byeonghun;Lee, Chang-Eon;Lee, Seungro
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.385-392
    • /
    • 2012
  • The purpose of this study is investigated on the combustion and the thermal characteristics of porous media burners which are many using for a condensing boiler recently. In addition, results of this study will be used the fundamental information to decide the burner type which will be applied to the future development of EGR(Exhaust gas recirculation) condensing boiler. Two flat type of burners made of a the metal fiber(MF) and the ceramic(CM) were selected and examined, experimentally. As experimental results, the emitted CO concentration of CM was higher than that of MF. However, the NO concentration of MF was higher than that of CM. The efficiencies of both burners were increased as increasing the burner capacity. While the efficiency of MF was higher than that of CM, regardless of the burner capacity. In the experimental range, MF is appropriated for the burner material and 0.8 of equivalence ratio is an optimal operation condition, regarding of the proportional control, the thermal efficiency and emitted NO and CO concentration based on the regulations of KS B standard and EN 677 standard.

Decision Making Model for Powertrain Mount-Stop&Go Performance in a compact mobile (소형 승용차의 파워트레인 마운트 Stop&Go 성능 적용을 위한 의사결정모델)

  • Yu, Jung-Woo;Um, In-Sup;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.967-976
    • /
    • 2012
  • This study presents a model to minimize vibration and noise of powertrain mount on a compact car which has the application of Stop & Go performance, in order to reduce CO2 and achieve better fuel-efficiency in accordance with the environmental regulations in automotive industries. In the first step, we analyze the powertrain mount system of the automobile "A" and present variables about rubber stiffness applied on powertrain mount using the Taguchi method. In the next step, we verify the optimization of vibration and noise which meet Stop & Go performance using the AHP(Analytic Hierarchy Process) method on the proto products for each variable. Using this validation system on the initial stage of the powertrain mount design, it is expected that we can grasp vibration and noise problems caused by engine movements and control them effectively without engineering know-how about powertrain mount rubber stiffness.

A Study on Rolling Friction Characteristics of Magneto-Rheological Elastomer under Magnetic Fields (자기장 영향에 따른 자기유변탄성체의 구름 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.234-239
    • /
    • 2014
  • Magneto-rheological elastomer (MR elastomer) is a smart material, because it has mechanical properties that change under a magnetic field. An MR elastomer changes its stiffness characteristics when the inner particles (iron particles) align along the direction of a magnetic field. There has been much research to make use of this characteristic to control vibration issues in various mechanical systems, such as for mounting systems in the automotive field, home appliances, etc. Furthermore, the friction and wear properties of MR elastomer have been studied, as these relate to the durability of the material needed to meet engineering requirements. Rolling friction (or rolling resistance) is one of these friction properties, but has not yet been studied in the context of MR elastomers. In this study, an MR elastomer is fabricated in the shape of a hollow cylinder to evaluate the rolling friction characteristic under a magnetic field. The test apparatus is setup and a strain gauge is used to calculate the rolling resistance under test conditions. Permanent magnets are used to supply the magnetic field during tests. The load and rolling speed conditions are also considered for the tests. The test results show that rolling friction characteristic has a different trend under different magnetic field, load, and rolling speed conditions. It is assumed that the stiffness change of an MR elastomer under a magnetic field has an effect on the rolling friction characteristic of the MR elastomer. For the future work, the rolling friction characteristics of MR elastomers will be controlled by adjusting the strength of the magnetic field using electromagnets.