• Title/Summary/Keyword: automobile die

Search Result 222, Processing Time 0.026 seconds

Fabrication and Characterization Evaluation of Prepreg with Unidirectional Glass Fibers for Use of Automobile Bumper Beams (자동차 범퍼빔용 일방향 유리섬유 프리프레그의 제조 및 특성평가)

  • Kim, Hyoung-Seok;Kim, Jin-Woo;Seo, Jin;Lee, Dong-Gi;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.806-811
    • /
    • 2013
  • In this study, to prevent the nonhomogeneity of fiber orientation during the molding of GFRP composites, GFRP prepreg was fabricated using roving fiber and polypropylene resin. Analyses on the degree of impregnation, tensile strength, and microstructure were conducted on the fabricated prepregs. A lower pulling speed, higher resin temperature, and longer die length showed a greater degree of impregnation of the prepreg. The scanning electron microscope (SEM) micrograph showed, a homogeneous fiber orientation. As a result, fundamental techniques for improved productivity were suggested for the manufacturing field.

Development of Side Forming Technology for the Tooth Part Using B.T.Pin in Cold Forming Process (B.T.Pin을 이용한 치형부품의 측면 냉간성형공법 개발)

  • Lee, J.S.;Park, S.J.;Kim, B.M.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.95-100
    • /
    • 2017
  • In this study, the method of process design for side forming of a tooth part used for a component of automobile transmission was suggested using FE-simulations. To develop the side forming for the tooth part, in this paper, the shape factors of B.T.Pin was considered as design parameters. The shape factors of B.T.Pin were selected to be the round of pin, reinforced angle and reinforced length. Based on FE simulation results, appropriate shape factor without causing any defects was selected. In addition, to increase the strength of pin, the combination of shape factor having minimum stress after side forming was selected using FE-simulation. In addition, with design of a die set, cold side forming of the tooth part was experimented to estimate effectiveness of the designed B.T.Pin. From experiments, it was found that the tooth part with complete formation of the tooth was obtained without making any forming defects and punch fracture.

Contouring Tool Path Generation for Dieless CNC Forming (다이레스 CNC 포밍을 위한 등고선 공구경로 생성)

  • Kang J.K.;Jin Y.G.;Yun S.B.;Kang B.S.;Youm K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1753-1756
    • /
    • 2005
  • The sheet parts are formed with dies conventionally. But this conventional forming process is not suited to small volume and varied production for the reason of high cost. For the solution of this problem, a new forming process, which is called CNC incremental sheet forming, is being introduced. This process can form sheet parts without die, and is very well suited to small volume and varied production in space flight and automobile. In this paper, dieless CNC forming system based on a machining center is developed. A special device to grasp and pull the blank sheet built in the machining center and tool path generation S/W from STL file of 3-D model are developed. Several sheet parts are incrementally formed to verify the effectiveness of the developed system.

  • PDF

Numerical Evaluation of Hemming Defects Found on Automotive Door Panels (유한요소해석에 의한 자동차 도어패널의 헤밍 결함 평가)

  • Seo, O.S;Jeon, K.Y;Rhie, C.H;Kim, H.Y
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2015
  • Hemming is used to connect two sheet metal components by folding the edge of an outer panel around an inner panel to create a smooth edge. The minimization of hemming defects is critical to the final quality of automobile products because hemming is one of the last operations during fabrication. Designing the hemmed part is not easy and is influenced by the geometry of the bent part. Therefore, the main problem for automotive parts is dimensional accuracy since formed products often deviate geometrically due to large springback. Few numerical approaches using 3-dimensional finite element model have been applied to hemming due to the small element size which is needed to properly capture the bending behavior of the sheet around small die corner and the comparatively big size of automotive opening parts, such as doors, hoods and deck lids. The current study concentrates on the 3-dimensional numerical simulation of hemming for an automotive door. The relationship between the design parameters of the hemming operation and the height difference defect is shown. Quality improvement of the automotive door can be increased through the study of model parameters.

A Study on the Process Design Expert System in Motor-Frame Die of an Automobile (자동차 모터 프레임 금형의 공정설계 전문가 시스템에 관한 연구)

  • Bae W. R.;Park D. H.;Park S. B.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.132-135
    • /
    • 2000
  • A process design expert system for rotationally symmetric deep drawing products has been developed The application of the expert system to non-axisymmetric components, however, has not been reported yet. Thus, in this present study, the expert system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first one is a recognition of shape module to recognize non-axisymmetric products. The second one is three dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third one is a blank design module to create an oval-shaped blank with the identical surface area. The forth one is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers.

  • PDF

Trimming Line Design of Auto-body Panel with Complex Shape Using Finite Element Inverse Method (유한요소 역해석을 이용한 복잡한 자동차 판넬의 트리밍 라인 설계)

  • Song, Y.J.;Hahn, Y.H.;Park, C.D.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.459-466
    • /
    • 2006
  • Trimming line design plays an important role in obtaining accurate edge profile after flanging. Compared to the traditional section-based method, simulation-based method can produce more accurate trimming line by considering deformation mechanics. Recently, the use of a finite element inverse method is proposed to obtain optimal trimming line. By analyzing flanging inversely from the final mesh after flanging, trimming line can be obtained from initial mesh on the drawing die surface. Initial guess generation fer finite element inverse method is obtained by developing the final mesh onto drawing tool mesh. Incremental development method is adopted to handle irregular mesh with various size and undercut. In this study, improved incremental development algorithm to handle complex shape is suggested. When developing the final mesh layer by layer, the algorithm which can define the development sequence and the position of developing nodes is thoroughly described. Flanging of front fender is analyzed to demonstrate the effectiveness of the present method. By using section-based trimming line and simulation-based trimming line, incremental finite element simulations are carried out. In comparison with experiment, it is clearly shown that the present method yields more accurate edge profile than section-based method.

Thermal Insulation Improvement by Laminated Adiabatic Structure Change in Holding Furnace with Molten Aluminum Alloy (알루미늄 용탕 보온용기의 단열재 적층구조 변경을 통한 보온성 향상)

  • Hwang, June-Sun;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.31 no.6
    • /
    • pp.336-341
    • /
    • 2011
  • Recently, aluminium usage in the automobile industry has been increased cause of its lightweight. The aluminium has a melting-solidification process in producing line and another melting process was needed in manufacturing process. Two times of melting process for making ingot and casting not only makes the loss of time and money but contaminates the air with Sox, Nox. For this reason, the holding furnace with laminated adiabatic material was developed. This holding furnace can deliver the molten aluminium directly to the industry needing molten aluminium. Recent holding furnace has above $15^{\circ}C/h$ of cooling rate and that causes solidification of molten aluminium. The ANSYS software was used to analysis the heat transfer. The adiabatic materials were laminated with optimized arrangement and holding furnace shape was changed with optimized modelling by ANSYS analysis for reducing the cooling rate of molten aluminium in holding furnace.

Microstructure and Mechanical Property of A356 for Rheocasting Using 6-Pole Electromagnetic Stirring Casting Process (6극 전자석 전자교반 레오캐스팅에 따른 A356의 조직적 / 기계적 영향분석)

  • Kim, Baek-Gyu;Roh, Jung-Suk;Bang, Hee-Jae;Heo, Min;Park, Jin-Ha;Jeon, Chung-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.61-65
    • /
    • 2020
  • Rheo-diecasting with stirring has been used in many material industries. As the 4th Industrial Revolution approaches the world, eco-friendly high-strength and light-weight materials become more important. Casting methods have been studied and used for aluminum-alloy automobile parts. This study carried out the effect analysis of the micro-structure and mechanical properties, such as yield/ultimate tensile strength, elongation, and hardness, of A356 using the 6-pole EMS (electro-magnetic stirring) casting process with a high electromagnetic force. As a result, the hardness and elongation of the A356 after T6 heat-treatment show a significant improvement, respectively, by 20% and 50%.

Application of CAD/CAM System to the Manufacturing and the Verification of Straight Bevel Gear with Crown Teeth (크라운 치형을 갖는 직선 베벨기어의 제작 및 검증을 위한 CAD/CAM 시스템 활용)

  • Lee, Kang-Hee;Park, Yong-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.270-275
    • /
    • 2008
  • The straight bevel gear for automobile part has been manufactured by the cold forging instead of the gear machining tool for the mass production. The application to CAD/CAM system has been necessary in order to develop the precision product quickly by forging through the minimization of trial and error and confirm the reproducibility. In the study, the straight bevel gear with the crown teeth has been modelled by the CAD/CAM system. The master gear after the gearing test has been machined after the modelling, NC data generation and verification. The die for forging and the jig for machining has been manufactured using the master gear.

Process Design and Forming Analysis of Permalloy Shielding Can for Instrument Cluster (자동차 계기판용 퍼멀로이 실딩 캔의 성형해석 및 공정설계)

  • Kim, Dong-Hwan;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.177-185
    • /
    • 2001
  • This study shows the process design and forming analysis of permalloy shielding can that support the automobile multi-display parts to indicate the accurate information of car. This study is particularly important, since the strain and thickness of permalloy shielding can is known to affect the magnetic properties such as coercivity and permeability quite thickness of permalloy shielding can is known to affect the magnetic properties such as coercivity and permeability quite sensitively. The objective functions are strain and thickness deviation. The punch radius, die radius and blank holding force are considered as design parameters. Orthogonal array (OA) table and characteristics are applied to neural network (NN) as train data. After training, the optimal and robust condition of design parameters is selected. This study shows the correlation between the design methodology of NN and the statistical design of experiments (DOE) approach.

  • PDF