• Title/Summary/Keyword: automatic thresholding

Search Result 96, Processing Time 0.02 seconds

INVESTIGATION OF REACTOR CONDITION MONITORING AND SINGULARITY DETECTION VIA WAVELET TRANSFORM AND DE-NOISING

  • Kim, Ok-Joo;Cho, Nan-Zin;Park, Chang-Je;Park, Moon-Ghu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.221-230
    • /
    • 2007
  • Wavelet theory was applied to detect a singularity in a reactor power signal. Compared to Fourier transform, wavelet transform has localization properties in space and frequency. Therefore, using wavelet transform after de-noising, singular points can easily be found. To test this theory, reactor power signals were generated using the HANARO(a Korean multi-purpose research reactor) dynamics model consisting of 39 nonlinear differential equations contaminated with Gaussian noise. Wavelet transform decomposition and de-noising procedures were applied to these signals. It was possible to detect singular events such as a sudden reactivity change and abrupt intrinsic property changes. Thus, this method could be profitably utilized in a real-time system for automatic event recognition(e.g., reactor condition monitoring).

Image Registration for Cloudy KOMPSAT-2 Imagery Using Disparity Clustering

  • Kim, Tae-Young;Choi, Myung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • KOMPSAT-2 like other high-resolution satellites has the time and angle difference in the acquisition of the panchromatic (PAN) and multispectral (MS) images because the imaging systems have the offset of the charge coupled device combination in the focal plane. Due to the differences, high altitude and moving objects, such as clouds, have a different position between the PAN and MS images. Therefore, a mis-registration between the PAN and MS images occurs when a registration algorithm extracted matching points from these cloud objects. To overcome this problem, we proposed a new registration method. The main idea is to discard the matching points extracted from cloud boundaries by using an automatic thresholding technique and a classification technique on a distance disparity map of the matching points. The experimental result demonstrates the accuracy of the proposed method at ground region around cloud objects is higher than a general method which does not consider cloud objects. To evaluate the proposed method, we use KOMPSAT-2 cloudy images.

Development of an Automatic Seeding System Using Machine Vision for Seed Line-up of Cucurbitaceous Vegetables (기계시각을 이용한 박과채소 종자 정렬파종시스템 개발)

  • Kim, Dong-Eok;Cho, Han-Keun;Chang, Yu-Seob;Kim, Jong-Goo;Kim, Hyeon-Hwan;Son, Jae-Ryoung
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.179-189
    • /
    • 2007
  • Most of the seeds of cucurbitaceous rootstock species used for grafting were mainly sown by hand. This study was carried out to develop an on-line discriminating algorithm of seed direction using machine vision and an automatic seeding system. The seeding system was composed of a supplying device, feeding device, machine vision system, reversing device, seeding device and system control section. Machine vision was composed of a color CCD camera, frame grabber, image inspection chamber, lighting and personal computer. The seed image was segmented into a region of seed part and background part using thresholding technique in which H value of HSI color coordinate system. A seed direction was discriminated by comparing position between the center of circumscribed rectangle to a seed and the center of seed image. It took about 49ms to identify and redirect seed. Line-up status of seed was good the more than 95% of a sowed seed. Seeding capacity of this system was shown to be 10,140 grains per hour, which is three times faster than that of a typical worker.

Automatic Detection of Kidney Tumor from Abdominal CT Scans (복부 CT 영상에서 신장암의 자동추출)

  • 김도연;노승무;조준식;김종철;박종원
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.803-808
    • /
    • 2002
  • This paper describes automatic methods for detection of kidney and kidney tumor on abdominal CT scans. The abdominal CT images were digitalized using a film digitizer and a gray-level threshold method was used to segment the kidney. Based on texture analysis results, which were perform on sample images of kidney tumors, SEED region of kidney tumor was selected as result of homogeneity test. The average and standard deviation, which are representative statistical moments, were used to as an acceptance criteria for homogeneous test. Region growing method was used to segment the kidney tumor from the center pixel of selected SEED region using a gray-level value as an acceptance criteria for homogeneity test. These method were applied to 113 images of 9 cases, which were scanned by GE Hispeed Advantage CT scanner and digitalized by Lumisvs LS-40 film digitizer. The sensitivity was 85% and there was no false-positive results.

Target Detection Using Texture Features and Neural Network in Infrared Images (적외선영상에서 질감 특징과 신경회로망을 이용한 표적탐지)

  • Sun, Sun-Gu
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.62-68
    • /
    • 2010
  • This study is to identify target locations with low false alarms on thermal infrared images obtained from natural environment. The proposed method is different from the previous researches because it uses morphology filters for Gabor response images instead of an intensity image in initial detection stage. This method does not need precise extracting a target silhouette to distinguish true targets or clutters. It comprises three distinct stages. First, morphological operations and adaptive thresholding are applied to the summation image of four Gabor responses of an input image to find out salient regions. The locations of extracted regions can be classified into targets or clutters. Second, local texture features are computed from salient regions of an input image. Finally, the local texture features are compared with the training data to distinguish between true targets and clutters. The multi-layer perceptron having three layers is used as a classifier. The performance of the proposed method is proved by using natural infrared images. Therefore it can be applied to real automatic target detection systems.

Automatic Photovoltaic Panel Area Extraction from UAV Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.559-568
    • /
    • 2016
  • For the economic management of photovoltaic power plants, it is necessary to regularly monitor the panels within the plants to detect malfunctions. Thermal infrared image cameras are generally used for monitoring, since malfunctioning panels emit higher temperatures compared to those that are functioning. Recently, technologies that observe photovoltaic arrays by mounting thermal infrared cameras on UAVs (Unmanned Aerial Vehicle) are being developed for the efficient monitoring of large-scale photovoltaic power plants. However, the technologies developed until now have had the shortcomings of having to analyze the images manually to detect malfunctioning panels, which is time-consuming. In this paper, we propose an automatic photovoltaic panel area extraction algorithm for thermal infrared images acquired via a UAV. In the thermal infrared images, panel boundaries are presented as obvious linear features, and the panels are regularly arranged. Therefore, we exaggerate the linear features with a vertical and horizontal filtering algorithm, and apply a modified hierarchical histogram clustering method to extract candidates of panel boundaries. Among the candidates, initial panel areas are extracted by exclusion editing with the results of the photovoltaic array area detection. In this step, thresholding and image morphological algorithms are applied. Finally, panel areas are refined with the geometry of the surrounding panels. The accuracy of the results is evaluated quantitatively by manually digitized data, and a mean completeness of 95.0%, a mean correctness of 96.9%, and mean quality of 92.1 percent are obtained with the proposed algorithm.

Directional Particle Filter Using Online Threshold Adaptation for Vehicle Tracking

  • Yildirim, Mustafa Eren;Salman, Yucel Batu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.710-726
    • /
    • 2018
  • This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.

Nonlinear matching measure for the analysis of on-off type microarray image (온-오프 형태의 DNA 마이크로어레이 영상 분석을 위한 비선형 정합도)

  • Ryu Mun ho;Kim Jong dae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.112-118
    • /
    • 2005
  • In this paper, we propose a new nonlinear matching measure for automatic analysis of the on-off type DNA microarray images in which the hybridized spots are detected by the template matching method. The proposed measure is obtained by binary-thresholding over the whole template region and taking the number of white pixels inside the spotted area. This measure is compared with the normalized covariance in terms of the classification ability of the successfulness of the locating markers. The proposed measure is evaluated for the scanned images of HPV DNA microarrays where the marker locating is a critical issue because of the small number of spots. The targeting spots of HPV DNA chips are designed for genotyping 22 types of the human papilloma virus(HPV). The proposed measure is proven to give more discriminative response reducing the miss cases of the successful marker locating.

Urban Road Extraction from Aerial Photo by Linking Method

  • Yang, Sung-Chul;Han, Dong-Yeo;Kim, Min-Suk;Kim, Yong-Il
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.67-72
    • /
    • 2003
  • We have seen rapid changes in road systems and networks in urban areas due to fast urbanization and increased traffic demands. As a result, many researchers have put greater importance on extraction, correction and updating of information about road systems. Also, by using the various data on road systems and its condition, we can manage our road more efficiently and economically. Furthermore, such information can be used as input for digital map and GIS analysis. In this research, we used a high resolution aerial photo of the roads in Seongnam area. First, we applied the top-hat filter to the area of interest so that the road markings could be extracted in an efficient manner. The lane separation lines were selected, considering the shape similarity between the selected lane separation line and reference data. Next, we extracted the roads in the urban area using the aforementioned road marking. Using this technique, we could easily extract roads in urban area in semi-automatic way.

  • PDF

Detection Algorithm of Lenslet Array Spot Pattern for Acquisition of Laser Wavefront (레이저 파면 획득용 Lenslet Array 점 패턴 검출 알고리즘)

  • Lee, Jae-Il;Lee, Young-Cheol;Huh, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.110-119
    • /
    • 2005
  • In this paper, a new detection algorithm was proposed for finding the position of lenslet array spot pattern used to acquire laser wavefront. Based on the analysis of the required signal processing characteristics, we categorized into and designed four main signal processing functions. The proposed was designed in order to have robust feature against a variation of geometrical form of the spot and also implemented to have semi-automatic thresholding capability based on CCD noise analysis. For performance evaluation, we made qualitative and quantitative comparisons with Carvalho's algorithm which has been published in recent. In the given experimental spot images, the proposed could detect the spots which has 1/3 times lower than the least S/N of which Carvalho's can detect and could reach to a detection precision of 0.1 pixel at the S/N. In functional aspect, the proposed could separate all valid spots locally. From these results, the proposed could have a superior precision of location detection of spot pattern in wider S/N range.