• Title/Summary/Keyword: automatic Mesh Generation

검색결과 139건 처리시간 0.032초

Visual Basic을 이용한 구조해석 프로그램 개발에 관한 연구 (A study on the Development of Structural Analysis Program using Visual Basic)

  • 이상갑;장승조
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.215-222
    • /
    • 1995
  • The objective of this paper is to develop a finite element structural analysis program using VB(Visual Basic) which has been recently getting popular as development tools of application program for Windows. VB provides several functions to develop an application program easily by supporting event-driven programming method and graphic object as control data type. This system is an integrated processor including preprocessor, solver and postprocessor. Automatic mesh generation is available at preprocess stage, and graphic presentation of deformation and stress is also represented at postprocess one.

  • PDF

적응 확장 유한요소기법과 형상최적설계로의 응용 (An adaptive X-FEM and its application to shape optimization)

  • 유용균;허재성;;곽병만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.538-543
    • /
    • 2007
  • A procedure is proposed to generate optimal grid with minimal user intervention while keeping a prescribed level of accuracy, using an adaptive X-FEM and applied to shape optimization. In spite of various advantages of X-FEM, however, there are several obstacles for practical applications. Because of using a uniform background mesh and additional degree of freedoms for enrichment, an X-FEM is usually computationally more expensive than traditional finite element method. Furthermore, there are often accuracy problems. For an automatic procedure of optimal mesh generation, an h-adaptive scheme and a posteriori error estimation obtained by a post-processing process are utilized. The procedure is shown by 2-D shape optimization examples.

  • PDF

임의 단면 형상의 3차원 압출에 대한 상계해법-유한요소법 Couple에 관한 연구 (A Study on Arbitrary Cross Section Shaped Three-Dimensional Extruion with Upper Bound Method-Finite Element Method Couple)

  • 이병섭;홍성인
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 춘계학술대회논문집
    • /
    • pp.145-155
    • /
    • 1996
  • The extrusion velocity of billet through a die and the shapes of the die are the important factors in the metal forming process of the extrusion of billet. in recent years, the life cycle of products is goingfaster. Although the former finite element method was capable of yielding a detailed analysis, it requires lots of time and extensive coding effort. Then, some simple devices were developed and based on upper bound method. For this purpose , a kinematically admiasible velocity field is formulated for extrusion of cylinders with arbitrary cross section and die profile on their outer surfaces by using a modified upper bound approach, which configures simulataneous extruding speeds in three directions . Also, In order to display mesh of the cold forward extrusion process using the approach , the automatic three-dimentional mesh generation produced by the approach coupled finite element method with upper bound method.

  • PDF

선체 구조설계로부터 구조해석 모델 생성에 필요한 데이타의 추출과 정형화에 관한 연구 (A Study on the Data Extraction and Formalization for the Generation of Structural Analysis Model from Ship Design Data)

  • 이재환;김용대
    • 대한조선학회논문집
    • /
    • 제30권3호
    • /
    • pp.90-99
    • /
    • 1993
  • 선체 구조해석에서 유한요소의 활용에 따라 3차원적인 모델이 필요하게 되었으나 선체구조는 매우 복잡하고 주문생산에 따른 선체규격의 상이함에 의해 유한요소 모델링에 어려움이 많다고 할 수 있다. 유한요소 소프트웨어에서 제공하는 pre-processor나 geometric modeler를 활용하여 모델링을 짧은 시간내 편리하게 하기 위해서는 DB에 저장된 설계 데이타로 부터 요소형성에 긴요한 데이타들을 추출하여 사용할 필요가 있게 된다. 본문에는 engineering database의 부분적인 구현 예로서, 설계-해석 자동화의 한 분야인 유한요소 모델링에 필요한 내용들이 설계 데이터로 부터 추출되어 관계형 데이타 테이블로 정형화되는 과정이 개념적으로 나타나 있다.

  • PDF

병렬 컴퓨팅 환경 하에서 인공위성 어댑터 가상최적설계 (Virtual Optimal Design of Satellite Adapter in Parallel Computing Environment)

  • 문종근;윤영하;김경원;김선원;김진희;김승조
    • 한국항공우주학회지
    • /
    • 제35권11호
    • /
    • pp.973-982
    • /
    • 2007
  • 연구는 병렬 컴퓨팅 기반에서 자동화된 격자 생성 기법과 입자 군집 최적화(PSO) 알고리즘을 적용한 최적 설계 프레임워크를 개발하여 이를 인공위성 어댑터 모듈의 구조 최적 설계에 적용하였다. 자동화된 격자 생성 기법을 적용하여 구조 형상 변화를 가능하게 함으로써 폭넓은 범위에서 최적 형상 모델을 도출할 수 있었다. 또한 최적화 알고리즘인 PSO 알고리즘을 병렬 계산환경과 접목하고, 계산 성능을 최대화하기 위해 비동기식 PSO 알고리즘을 개발하였다. 그 결과 최적화에 걸리는 계산 시간을 줄일 수 있었다. 최적화 작업에서 제한 조건으로는 고유진동수와 어댑터에 발생하는 최대 응력 값을 고려하였다. 결과적으로 인공위성 어댑터 모듈의 최적 설계를 통해 인공위성 구조 질량 감소를 유도해 내었다.

3차원 J적분 계산을 위한 자동 해석 시스템 개발 (Development of Automated J-Integral Analysis System for 3D Cracks)

  • 이준성
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.74-79
    • /
    • 2000
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic nonlinear analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The complete finite element(FE) model generated, and a stress analysis is performed. In this system, burden to analysts fur introducing 3D cracks to the FE model as well as fur estimating their fracture mechanics parameters can be dramatically reduced. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

  • PDF

선택적 p-분배에 의한 적응적 유한 요소법 (Adaptive Finite Element Method by Selective p-Distribution)

  • 조준형;우광성;박진환;안재석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.288-295
    • /
    • 2003
  • An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the recovery technique. In case of the recovery technique, the SPR(superconvergent patch recovery) approach has been modified for p-adaptive mesh refinement. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly. To verify the proposed algorithm, the limit value approach is proposed which utilizes the exact strain energy computed from the extrapolation equation. A new pre-processor is developed for the p-version finite element program in which the vector graphic editor is used for the automatic generation of node connection and coordinate by halfedge solid data structure according to uniform or nonuniform p-distribution. The general 2-D algorithm is also developed to generate face modes and internal modes in accordance with different mesh types. The quality of the error estimator is investigated with the help of two mumerical examples. The results show that the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.

  • PDF

셀 구조물에서 중립면에 대한 유한요소망의 자동생성 (Automatic Generation of Finite Element Meshes on Midsurfaces in Shell Structures)

  • 손준희;채수원
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1517-1525
    • /
    • 2004
  • Shell finite elements are widely used for the analysis of thin section objects such as sheet metal parts, automobile bodies and et al. due to their computational efficiency. Since many of input data for finite element analysis are given as solid models or triangulated surface models, one should extract midsurface information from these input data initially and then construct shell meshes on the extracted midsurfaces. In this paper, a method of generating shell elements on midsurfaces directly from input models has been proposed, in which midsurface generating process can be omitted. In order to construct shell meshes, the input models should be triangulated on surfaces first, and then tetrahedral elements are generated by using an advancing front method, and finally mid shell surfaces are obtained from tetrahedral meshes. Some examples are given to demonstrate the efficiency of the proposed method.

3 차원 구조물에서 Chordal Axis Transform 을 이용한 쉘 요소망의 자동생성 (Automatic Generation of Shell Elements by Using Chordal Axis Transform in 3D Structures)

  • 손준희;채수원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.700-705
    • /
    • 2004
  • Shell finite elements are widely used for the analysis of thin section objects such as sheet metal parts, automobile bodies and et al. due to their computational efficiency. Since many of input data for finite element analysis are given as solid models or triangulated surface models, one should extract midsurface information from these input data initially and then construct shell meshes on the extracted midsurfaces. In this paper, a method of generating shell elements on midsurfaces directly from input models have been proposed. In order to construct shell meshes, the input models should be triangulated on surfaces first, and then tetrahedral elements are generated by using an advancing front method, and finally mid shell surfaces are obtained from tetrahedral meshes. Some examples are given to demonstrate the efficiency of the proposed method.

  • PDF

CAD 형상 데이터를 이용한 비정렬 표면 격자계의 자동 생성 기법 (AUTOMATIC GENERATION OF UNSTRUCTURED SURFACE GRID SYSTEM USING CAD SURFACE DATA)

  • 이봉주;김병수
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.68-73
    • /
    • 2007
  • Computational Fluid Dynamics (CFD) approach is now playing an important role in the engineering process in these days. Generating proper grid system in time for the region of interest is prerequisite for the efficient numerical calculation of flow physics using CFD approach. Grid generation is, however, usually considered as a major obstacle for a routine and successful application of numerical approaches in the engineering process. CFD approach based on the unstructured grid system is gaining popularity due to its simplicity and efficiency for generating grid system compared to the structured grid approaches, especially for complex geometries. In this paper an automated triangular surface grid generation using CAD(Computer Aided Design) surface data is proposed. According to the present method, the CAD surface data imported in the STL(Stereo-lithography) format is processed to identify feature edges defining the topology and geometry of the surface shape first. When the feature edges are identified, node points along the edges are distributed. The initial fronts which connect those feature edge nodes are constructed and then they are advanced along the CAD surface data inward until the surface is fully covered by triangular surface grid cells using Advancing Front Method. It is found that this approach can be implemented in an automated way successfully saving man-hours and reducing human-errors in generating triangular surface grid system.