Journal of the Institute of Electronics Engineers of Korea SC
/
v.49
no.1
/
pp.8-11
/
2012
Automated Vision Inspection (AVI) systems automatically detect any defect feature in a surface image. The performance of the system can be measured under a special circumstances such as ultimate defect detection. In this situation, the defect signal level is similar to noise level and it becomes hard to make a solid decision with AVI systems. In this paper, we propose an effective preprocessing technique to enhance SNR (Signal to Noise Ratio). The method is motivated by some principles of HVS (Human Visual System) and RLC (Run Length Coding) techniques is used for this purpose. The proposed preprocessing technique enhances SNR under ultimate defect conditions and improves overall performance of AVI system.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.45
no.3
/
pp.42-50
/
2008
We developed a visual inspection system for detecting defective products. Most existing inspection systems are designed to be dedicated to one product, which makes operator spend extra money and time to adopt other products. In this work, we propose a flexible visual inspection system that can inspect various products without any additional major job at a low-cost. The developed system contained image processing algorithm libraries and user-friendly graphic interface for adaptable image-based inspection system. We can find a proper threshold value using the proposed algorithm which uses correlation coefficient between a non-defective product and existing sample images of defective product. And We tested the performance of the proposed algorithm using Otsu's method. The proposed system is applied to a automated inspection line for cellular phone.
$\mu$BGA(Ball Grid Array) is growing in response to a great demand for smaller and lighter packages for the use in laptop, mobile phones and other evolving products. However it is not easy to find its defect by human visual due to in very small dimension. From this point of view, we are interested its development of a vision based automated inspection algorithm. For this, first a 2D view of $\mu$BGA is described under a special blue illumination. Second, a notation-invariant 2D inspection algorithm is developed. Finally a 3D inspection algorithm is proposed for the case of stereo vision system. As a simulation result, it is shown that 3D defect not easy to find by 2D algorithm can be detected by the proposed inspection algorithm.
Journal of Korea Society of Digital Industry and Information Management
/
v.7
no.4
/
pp.81-88
/
2011
Mini Double Gears Frame is critical part of PDP and also produces couple hundred thousand every month. In the process of mass production, product inspection is very important process. Double Gear, one of the part of machine, was inspected by human eyes which caused mistakes and slow progress. To achieve the speed and accuracy the system was compensated by vision system which is inspecting automatically. The focus value is measured based on the fact that high contrast images have much high frequency edge information. High frequency term of the image is extracted using the high-pass filter and the sum of the high frequency term is used as the focus value. We used a Gaussian smoothing filter to reduce the noise and then measures the focus value using the modified Laplacian filter called a Sum modified Laplacian Focus values for the various lens positions are calculated and the position with the maximum focus value is decided as the focused position. The focus values calculated in various lens position showed the Gaussian distribution. We proposed a method to estimate the best focus position using the Gaussian curve fitting. Focus values of the uniform interval lens positions are calculated and the values are used to estimate the Gaussian distribution parameters to find the best focus position.
This paper presents adaptive neuro-fuzzy inference based defect detection method for various defect types, such as micro-crack, fingerprint and contamination, in heterogeneously textured surface of polycrystalline solar wafers. Polycrystalline solar wafer consists of various crystals so the surface of solar wafer shows heterogeneously textures. Because of this property the visual inspection of defects is very difficult. In the proposed method, we use local binary feature and fuzzy reasoning for defect detection. Experimental results show that our proposed method achieves a detection rate of 80%~100%, a missing rate of 0%~20% and an over detection (overkill) rate of 9%~21%.
Candra Zonyfar;Taek Lee;Jung-Been Lee;Jeong-Dong Kim
Journal of Platform Technology
/
v.11
no.6
/
pp.13-20
/
2023
Regularly inspecting vehicle tires' condition is imperative for driving safety and comfort. Poorly maintained tires can pose fatal risks, leading to accidents. Unfortunately, manual tire visual inspections are often considered no less laborious than employing an automatic tire inspection system. Nevertheless, an automated tire inspection method can significantly enhance driver compliance and awareness, encouraging routine checks. Therefore, there is an urgency for automated tire inspection solutions. Here, we focus on developing a deep learning (DL) model to predict cracked tires. The main idea of this study is to demonstrate the comparative analysis of DenseNet121, VGG-19 and EfficientNet Convolution Neural Network-based (CNN) Transfer Learning (TL) and suggest which model is more recommended for cracked tire classification tasks. To measure the model's effectiveness, we experimented using a publicly accessible dataset of 1028 images categorized into two classes. Our experimental results obtain good performance in terms of accuracy, with 0.9515. This shows that the model is reliable even though it works on a dataset of tire images which are characterized by homogeneous color intensity.
Liu, Yufei;Cho, Soojin;Spencer, Billie F. Jr;Fan, Jiansheng
Smart Structures and Systems
/
v.14
no.4
/
pp.719-741
/
2014
Monitoring surface cracks is important to ensure the health of concrete structures. However, traditional visual inspection to monitor the concrete cracks has disadvantages such as subjective inspection nature, associated time and cost, and possible danger to inspectors. To alter the visual inspection, a complete procedure for automated crack assessment based on adaptive digital image processing has been proposed in this study. Crack objects are extracted from the images using the subtraction with median filter and the local binarization using the Niblack's method. To adaptively. determine the optimal window sizes for the median filter and the Niblack's method without distortion of crack object an optimal filter size index (OFSI) is proposed. From the extracted crack objects using the optimal size of window, the crack objects are decomposed to the crack skeletons and edges, and the crack width is calculated using 4-connected normal line according to the orientation of the local skeleton line. For an image, a crack width nephogram is obtained to have an intuitive view of the crack distribution. The proposed procedure is verified from a test on a concrete reaction wall with various types of cracks. From the crack images with different crack widths and patterns, the widths of cracks in the order of submillimeters are calculated with high accuracy.
Chan, Brodie;Guan, Hong;Jo, Jun;Blumenstein, Michael
Structural Monitoring and Maintenance
/
v.2
no.3
/
pp.283-300
/
2015
Visual condition inspections remain paramount to assessing the current deterioration status of a bridge and assigning remediation or maintenance tasks so as to ensure the ongoing serviceability of the structure. However, in recent years, there has been an increasing backlog of maintenance activities. Existing research reveals that this is attributable to the labour-intensive, subjective and disruptive nature of the current bridge inspection method. Current processes ultimately require lane closures, traffic guidance schemes and inspection equipment. This not only increases the whole-of-life costs of the bridge, but also increases the risk to the travelling public as issues affecting the structural integrity may go unaddressed. As a tool for bridge condition inspections, Unmanned Aerial Vehicles (UAVs) or, drones, offer considerable potential, allowing a bridge to be visually assessed without the need for inspectors to walk across the deck or utilise under-bridge inspection units. With current inspection processes placing additional strain on the existing bridge maintenance resources, the technology has the potential to significantly reduce the overall inspection costs and disruption caused to the travelling public. In addition to this, the use of automated aerial image capture enables engineers to better understand a situation through the 3D spatial context offered by UAV systems. However, the use of UAV for bridge inspection involves a number of critical issues to be resolved, including stability and accuracy of control, and safety to people. SLAM (Simultaneous Localisation and Mapping) is a technique that could be used by a UAV to build a map of the bridge underneath, while simultaneously determining its location on the constructed map. While there are considerable economic and risk-related benefits created through introducing entirely new ways of inspecting bridges and visualising information, there also remain hindrances to the wider deployment of UAVs. This study is to provide a context for use of UAVs for conducting visual bridge inspections, in addition to addressing the obstacles that are required to be overcome in order for the technology to be integrated into current practice.
International conference on construction engineering and project management
/
2020.12a
/
pp.13-22
/
2020
Reinforcement steel fixing is a skilled and manually intensive construction trade. Current practice for the quality assessment of reinforcement steel fixing is normally performed by fabricators and has high potential in having errors due to the tedious nature of the work. In order to overcome the current inspection limitation, this study presents an approach that provides visual assistance and inspection enhancement for inspectors to assess the dimensional layout of reinforcement steel fixing. To this end, this study aims to establish an end-to-end framework for rebar layout quality inspection using laser scanning and Augmented Reality (AR). The proposed framework is composed of three parts: (1) the laser-scanned rebar data processing; (2) the rebar inspection procedure integrating with AR; and (3) the checking and fixing the rebar layout through AR visualization. In order to investigate the feasibility of the proposed framework, a case study assessing the rebar layout of a lab-scaled formwork containing two rebar layers is conducted. The results of the case studies demonstrate that the proposed approach using laser scanning and AR has the potential to produce an intuitive and accurate quality assessment for the rebar layout.
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.11
/
pp.53-61
/
1996
In this paper, efficient techniques for solder joint inspection have been described. Using three layers of ring shaped LED's with different illumination angles, three frames of images are sequentially obtained. From these images the regions of interest (soldered regions) are segmented, and their characteristic features including the average gray level and the percentage of highlights - refereed to as 2D features - are extracted. Based on the backpropagation algorithm of neural networks, each solder joint is classified intor one of the pre-defined types. If the output value is not in the confidence interval, the distribution of tilt angles-referred to as 3D features - is claculated, and the solder joint is classified based on the bayes classfier. The second classifier requires more computation while providing more information and better performance. The proposed inspection system has been implemented and tested with various types of solder joints in SMDs. The experimental results have verified the validity of this scheme in terms of speed and recognition rate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.