• Title/Summary/Keyword: automated crane system

Search Result 64, Processing Time 0.022 seconds

Structural Optimization for LMTT-mover of a Crane (크레인 LMTT용 이동체의 구조최적설계)

  • Min K. A.;Lee K. H.;Han D. S.;Han G. J.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.311-316
    • /
    • 2004
  • LMTT (Linear Motor-based Transfer Technology) is a horizontal transfer system for the yard automation. which has been proposed to take the place qf AGV (Automated Guided Vehicle) in the maritime container terminal. the system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle mr. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research structural optimization for a mover of shuttle mr is performed to minimize the weight satisfying design criteria the objective function is set up as weight. On the contrary, design variable is considered as transverse, longitudinal and wheel beam's thickness and shape variable determining the dimension toward high direction and the constraints are the stresses.

  • PDF

Structural Optimization for LMTT-mover of a Crane (크레인 LMTT용 이동체의 구조최적설계)

  • Lee K.-H.;Min K. A.;PARK H. W.;Han D. S.;Han G. J.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.415-420
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Technology) is the horizontal transfer system for yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle) in the maritime container terminal. The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research, structural optimization for a mover of shuttle car is performed to minimize the weight satisfying design criteria. The objective function is set up as weight. On the contrary, the design variables are transverse, longitudinal and wheel beams' thicknesses and its height, and the constraints are considered as strength and stiffness.

Road-Map for Automation Technology Development of Port Equipment's ATC (항만하역장비 ATC 무인자동화기술 개발 로드맵)

  • Hong, Dong-Hee;Sun, Su-Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.109-119
    • /
    • 2010
  • Though the productivity increased by 50% as KBCT was the first to use ATC System in Korea, productivity is unlikely to be improved any longer because of unsatisfactory detailed automation technology development. Accordingly, the government embarked on 'high efficiency ATC technology development', but it is important to avoid overlapping with other advanced technology which is already developed, and to develop differentiated technology which has the way about it. To accomplish this, this paper suggested in-depth analysis about established domestic and overseas technologies, clear goal setting to achieve world-class level productivity, and rational development road map for success in technology development. Through this, as to the ATC automatization technology development, the ports of our country precedes in a competition with the ports of the neighboring country, and it will jump to the Northeast Asia Logistics-Hub-port and a role as growth engine for next-generation in our country will be played. In addition, the result of the technology development will become the standard of the performance evaluation of the relative technique of the domestic automated terminal, and will be leads the world in this field of technology.

A study of ubiquitous-RTLS system for worker safety (작업자 안전관리를 위한 유비쿼터스-실시간 위치추적시스템 연구)

  • Kim, Young-Baig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1C
    • /
    • pp.1-7
    • /
    • 2012
  • At the industrial work site, the manufacturing process is being automated to improve work efficiency. However, it is often difficult to automate the entire manufacturing process, and there are spaces in which workers there are constantly exposed to danger. To protect such workers from the danger, this paper studied a worker safety management system for the industrial work site which uses a location recognition system and which is based on the Ubiquitous-Wireless Sensor Network (U-WSN). Using wireless signals, the distance between two devices can be measured and the location of a worker can be calculated using triangularization in 3-D. But at the industrial work sites where there are a lot of steel and structures, errors occur due to signal reflection and multi-path, etc., which makes it difficult to get the accurate location. To address this problem the following was done: first, a circular polarization patch antenna appropriate to the work site was used to reduce the degree of error that may occur from the antenna emission pattern and the particular Line of Sight (LOS); second, a 3-D localization technique and a filtering algorithm were used to improve the accuracy of location determination. The developed system was tested by using it on a wharf crane to validate its accuracy and effectiveness. The proposed location recognition system is expected to contribute greatly in ensuring the safety of workers at industrial work sites.