• 제목/요약/키워드: automated classification

검색결과 328건 처리시간 0.02초

다중센서와 GIS 자료를 이용한 접근불능지역의 토지피복 분류 (Land cover classification of a non-accessible area using multi-sensor images and GIS data)

  • 김용민;박완용;어양담;김용일
    • 한국측량학회지
    • /
    • 제28권5호
    • /
    • pp.493-504
    • /
    • 2010
  • This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.

MRPC eddy current flaw classification in tubes using deep neural networks

  • Park, Jinhyun;Han, Seong-Jin;Munir, Nauman;Yeom, Yun-Taek;Song, Sung-Jin;Kim, Hak-Joon;Kwon, Se-Gon
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1784-1790
    • /
    • 2019
  • Accurate and consistent characterization of defects in steam generator tubes (SGT) in nuclear power plants is one of the key issues in the field of nondestructive testing since the large number of signals to be analyzed in a time-limited in-service inspection causes a serious problem in practice. This paper presents an effective approach to this difficult task of automated classification of motorized rotating pancake coil (MRPC) eddy current flaw acquired from tube specimens with deliberated defects using deep neural networks (DNN). This approach consists of five steps, namely, the data acquisition using the MRPC probe in the tube, the signal preprocessing to make data more suitable for training DNN, the data augmentation for boosting a training performance, the training of DNN, and finally demonstration of the trained DNN for discriminating the axial and circumferential defects. The high performance obtained in this study shows that DNN is useful for classification of defects in tubes from the MRPC eddy current signals even though the number of signals is very large.

건설현장에서 발생하는 폐기물 인식 모델 개발 (Development of a waste recognition model at construction sites)

  • 나승욱;허석재
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.219-220
    • /
    • 2021
  • It is considered that the construction industry is one of the pivotal players in the national economy in terms of Gross Domestic Production (GDP) and employment. Behind the positive role of this industrial sector to the national economy, the construction industry generates approximately 50 % of the total waste generation from all the industrial sectors. There are several measures to mitigate the adverse impacts of the construction waste such as reduce, reuse and recycle. Recycling would be one of the effective strategies for waste minimisation, which would be able to reduce the demand upon new resources as well as enhance reusing the construction materials on sites. The automated construction waste classification system would make it possible not only to reduce the amount of labour input but also mitigate the possibility of errors during the manual classification process. In this study, we proposed an automated waste segmentation and classification system for recycling the construction and demolition waste in the real construction site context. Since the practical application to the real-world construction sites was one of the significant factors to develop the system, a YOLACT (You Only Look At CoefficienTs) algorithm was chosen to conduct the study. In this study, it is expected that the proposed system would make it possible to enhance the productivity as well as the cost efficiency by reducing the manpower for the construction and demolition waste management at the construction site.

  • PDF

실시간 처리를 위한 타이어 자동 선별 비젼 시스템 (The automatic tire classfying vision system for real time processing)

  • 박귀태;김진헌;정순원;송승철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.358-363
    • /
    • 1992
  • The tire manufacturing process demands classification of tire types when the tires are transferred between the inner processes. Though most processes are being well automated, the classification relies greatly upon the visual inspection of humen. This has been an obstacle to the factory automation of tire manufacturing companies. This paper proposes an effective vision systems which can be usefully applied to the tire classification process in real time. The system adopts a parallel architecture using multiple transputers and contains the algorithms of preprocesssing for character recognition. The system can be easily expandable to manipulate the large data that can be processed seperately.

  • PDF

학습방법개선과 후처리 분석을 이용한 자동문서분류의 성능향상 방법 (Reinforcement Method for Automated Text Classification using Post-processing and Training with Definition Criteria)

  • 최윤정;박승수
    • 정보처리학회논문지B
    • /
    • 제12B권7호
    • /
    • pp.811-822
    • /
    • 2005
  • 자동문서분류는 문서의 내용에 기반하여 미리 정의된 항목에 자동으로 할당하는 작업으로서 효율적인 정보관리 및 검색등에 필수적인 작업이다. 기존의 문서분류성능 향상을 위한 연구들은 대부분 분류모델 자체를 개선시키는 데 주력해왔으며 통계적인 방법으로 그 범위가 제한되어왔다. 본 연구에서는 자동문서분류의 성능향상을 위해 데이터마이닝 기법과 결함허용방법을 이용하는 개선된 학습알고리즘과 후처 리 방법에 의한 RTPost 시스템을 제안한다. RTPost 시스템은 학습문서 선택작업 이전에 분류항목 설정의 문제를 다루며, 분류함수의 성능보다는 지정방식의 문제점을 감안하여 학습과 분류 후처리 프로세스를 개선하려는 것이다. 이를 통해 분류결과에 중요한 영향을 미쳐왔던 학습문서의 수와 선택방법, 분류모델의 성능등에 의존하지 않는 안정적인 분류가 가능하였고, 이를 분류오류율이 높은 경계선 인접영역에 위치한 문서들에 적용한 결과 높은 정확율을 얻을 수 있었다. 뿐만 아니라, RTPost 프로세스를 진행하는 동안 능동학습방법의 장점을 수용하여 학습효과는 높이며 비용을 감소시킬 수 있는 자가학습방법(self learning)방법의 효과를 기대할 수 있다.

서술부의 함수체계화를 통한 인허가관련 건축법규의 자동검토 응용방안 (Development of High-level Method for Representing Explicit Verb Phrases of Building Code Sentences for the Automated Building Permit System of Korea)

  • 박서경;이진국;김인한
    • 한국CDE학회논문집
    • /
    • 제21권3호
    • /
    • pp.313-324
    • /
    • 2016
  • As building information modeling (BIM) is expanding its influence in various fields of architecture, engineering, construction and facility management (AEC-FM) industry, BIM-based automated code compliance checking has become possible prospects. For the automated code compliance checking, requirements in building code need to be processed into explicit representation that enables automated reasoning. This paper aims to develop high-level methods that translate verb phrases into explicit representation. The high-level methods represent conditions, properties, and related actions of the building objects and clarify the core content of the constraints. The authors analyze building permit requirements in Korea Building Code and establish a standardized process of deriving the high-level methods. As a result, 60 kinds of the high-level methods were derived. In addition, method classification, analysis, and application are introduced. This study will contribute to the representation of explicit building code sentences and establishment of the automated building permit system of Korea.

Automated Classification of PubMed Texts for Disambiguated Annotation Using Text and Data Mining

  • Choi, Yun-Jeong;Park, Seung-Soo
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.101-106
    • /
    • 2005
  • Recently, as the size of genetic knowledge grows faster, automated analysis and systemization into high-throughput database has become hot issue. One essential task is to recognize and identify genomic entities and discover their relations. However, ambiguity of name entities is a serious problem because of their multiplicity of meanings and types. So far, many effective techniques have been proposed to analyze documents. Yet, accuracy is high when the data fits the model well. The purpose of this paper is to design and implement a document classification system for identifying entity problems using text/data mining combination, supplemented by rich data mining algorithms to enhance its performance. we propose RTP ost system of different style from any traditional method, which takes fault tolerant system approach and data mining strategy. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We experimented our system for classifying RB-related documents on PubMed abstracts to verify the feasibility.

  • PDF

사출금형구조의 자동분류코딩시스템의 개발 (An Automated Classification and Coding System for Structure of Injection Mold)

  • 조규갑;정영득;오수철;정현석
    • 한국정밀공학회지
    • /
    • 제6권3호
    • /
    • pp.60-67
    • /
    • 1989
  • An automated classification and coding system for structure of injection mold is developed based on the statistical analysis and the critical evaluation of the results for the sample survey of 200 assembly drawings of injection mold. The proposed system is a mixed code system consisting of 15 digits and each digit consists of 10 numerical codes. An interactive computer program is developed by using TURBO PASCAL on IBM PC/AT compatible system. A case study is discussed to show the procedure and the function of the system. The results for applications of the system to real problems show that the system works well and is useful for design, manufacturing and management of injection mold.

  • PDF

Automatic Adverb Error Correction in Korean Learners' EFL Writing

  • Kim, Jee-Eun
    • International Journal of Contents
    • /
    • 제5권3호
    • /
    • pp.65-70
    • /
    • 2009
  • This paper describes ongoing work on the correction of adverb errors committed by Korean learners studying English as a foreign language (EFL), using an automated English writing assessment system. Adverb errors are commonly found in learners 'writings, but handling those errors rarely draws an attention in natural language processing due to complicated characteristics of adverb. To correctly detect the errors, adverbs are classified according to their grammatical functions, meanings and positions within a sentence. Adverb errors are collected from learners' sentences, and classified into five categories adopting a traditional error analysis. The error classification in conjunction with the adverb categorization is implemented into a set of mal-rules which automatically identifies the errors. When an error is detected, the system corrects the error and suggests error specific feedback. The feedback includes the types of errors, a corrected string of the error and a brief description of the error. This attempt suggests how to improve adverb error correction method as well as to provide richer diagnostic feedback to the learners.

Neural Network Approach to Automated Condition Classification of a Check Valve by Acoustic Emission Signals

  • Lee, Min-Rae;Lee, Joon-Hyun;Song, Bong-Min
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.509-519
    • /
    • 2007
  • This paper presents new techniques under development for monitoring the health and vibration of the active components in nuclear power plants, The purpose of this study is to develop an automated system for condition classification of a check valve one of the components being used extensively in a safety system of a nuclear power plant. Acoustic emission testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disc movement for valve failure such as wear and leakage due to foreign object interference in a check valve, It is clearly demonstrated that the evaluation of different types of failure types such as disc wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters, It is also shown that the leak size can be determined with an artificial neural network.