• Title/Summary/Keyword: attenuated

Search Result 2,463, Processing Time 0.036 seconds

Effect of the Space Dose Rate due to Change of X-ray Irradiation Energy and MU Value in Radiation Therapy Room (선형가속기의 엑스선 조사에너지와 MU값의 변화가 치료실 내 공간선량률 변화에 미치는 영향)

  • Kwon, Hyeonghyo;Park, Geonryul;Kim, Minji;Jo, Yeongdan;Kim, Youngjae
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2020
  • This study investigated the radiation protection of therapeutic radiologists. Based on the change in X-ray energy and MU value, the space dose rate in the treatment room after the irradiation was measured. 6MV, 10MV and 15MV photon beams were exposed to radiation inside the treatment room based on 300MU, 600MU and 1000MU using a linear accelerator. And repeated 10 times under the same conditions. As a result of the experiment, 0.1555 μSv/h for 6MV 300MU, 0.157 μSv /h for 300sec, 0.152 μSv/h, 0.156 μSv/h for 600MU, and 0.157 μSv/h 0.152 μSv/h for 1000MU. 300MU of 10MV was 0.49 μSv/h, 0.309 μSv/h, and 0.69 μSv/h, 0.416 μSv/h for 600MU, respectively, and 1000MU was 0.977 μSv/h and 0.478 μSv/h, respectively. The 300MU of 15MV was 3.02 μSv/h, 1.2 μSv/h, 5.459 μSv/h at 600MU, 7.34 μSv/h at 1.836 μSv/h 1000MU, and 2.709 μSv/h. The average spatial dose rate of 6MV was not significantly different from the natural spatial dose rate in the treatment room. High spatial dose rates were measured at 10 MV and 15 MV and were attenuated over time. Therefore, entering the treatment room after a certain period of time (more than 60 seconds) is considered to be effective to prevent the exposure dose of radiation workers.

Effects on Tensile Strength and Elasticity after Treatment with Glutaraldehyde, Solvent, Decellularization and Detoxification in Fresh Bovine Pericardium (소의 심낭 고정에서 용매 처치, 무세포화 혹은 항독성화 처치가 조직의 장력 및 신장도에 미치는 영향)

  • Jang, Woo Sung;Kim, Yong Jin;Kim, Soo Hwan
    • Journal of Chest Surgery
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Background: Bioprosthetic materials have been made using glutaraldehyde fixation of porcine or bovine pericardium during cardiovascular surgery. But these bioprostheses have the problems of calcification and mechanical failure. We determined changes in tensile strength and elasticity of pericardium after glutaraldehyde, solvent, decellularization and detoxification. Material and Method: Tissues were allocated to four groups: glutaraldehyde with and without solvent, decellularization, and detoxification. We studied tensile strength and strain on tissues. We measured the tensile strength of fresh pericardium stretched in six directions (with 5 mm width), and % strain, which we calculated from the breaking point when we pulled the pericardium in two directions. Result: Tensile strength was reduced when we used the usual concentrated glutaraldehyde fixation (n=83, $MPa=11.47{\pm}5.40$, p=0.006), but there was no change when we used solvent. Elasticity was increased after glutaraldehyde fixation (n=83, strain $(%)=24.55{\pm}9.81$, p=0.00), but there was no change after solvent. After decellularization of pericardium, the tensile strength was generally reduced. The decrease in tensile strength after concentrated glutaraldehyde fixation for a long time was significantly greater less than after concentrated solvent (p=0.01, p=0.00). After detoxification, the differences in strength and strain were not significant. Conclusion: After glutaraldehyde treatment of pericardium there is no loss in tensile strength (even though we did the glutaraldehyde, solvent and detoxification treatments LOGIC IS UNCLEAR). Also, these treatments had a tendency to increase elasticity. Although post-treatment decellularization led to a significant loss in strength, this effect could be attenuated using a low concentration of solvent or hypertonic solution.

Sorghum Extract Enhances Caspase-dependent Apoptosis in Primary Prostate Cancer Cells and Immune Activity in Macrophages (수수 추출물에 의한 primary 전립선 암세포의 caspase 의존성 apoptosis 유도 및 대식세포 면역활성 증가)

  • Cho, Hyun-Dong;Kim, Jeong-Ho;Hong, Seong-Min;Lee, Ju-Hye;Lee, Yong-Seok;Kim, Du-Hyun;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1431-1437
    • /
    • 2016
  • Sorghum bicolor L. is one of the important minor cereals in Asia, Africa, and the central United States, and it is considered a rich source of polyphenols, flavonoids, and dietary fiber. However, there is a lack of data on the anti-cancer activity of Sorghum in prostate cancer cells and immune activity in macrophages. This study aims to investigate the potential effects of an ethanol extract of S. bicolor L. (SE) on inducing apoptosis in RC-58T/h/SA#4 cells and immunomodulatory activity in RAW 264.7 cells. SE significantly inhibited the viability of RC-58T/h/SA#4 primary prostate cancer cells in a dose-dependent manner. The morphology of RC-58T/h/SA#4 cells treated with SE was shrunken and involved the formation of an apoptotic body and nuclear condensation. In addition, SE markedly activated caspase-8, -9, and -3; increased the protein levels of Bax, p53, cleaved PARP, and cytosolic cytochrome c; and decreased Bcl-2 protein expression. Furthermore, the inhibition of caspases in RC-58T/h/SA#4 cells with z-VAD-fmk attenuated SE-induced cell growth inhibition. The production of nitric oxide (NO) was also elevated by SE treatment, as revealed by immune response parameters. These results suggest that SE inhibits growth and induces apoptosis in primary human prostate cancer cells in a caspase-dependent manner, and it modulates the immune functions in macrophages. Therefore, Sorghum bicolor L. may be used as a functional food to prevent prostate cancer and enhance immune activity.

Attenuation of Experimental Autoimmune Hepatitis in Mice with Bone Mesenchymal Stem Cell-Derived Exosomes Carrying MicroRNA-223-3p

  • Lu, Feng-Bin;Chen, Da-Zhi;Chen, Lu;Hu, En-De;Wu, Jin-Lu;Li, Hui;Gong, Yue-Wen;Lin, Zhuo;Wang, Xiao-Dong;Li, Ji;Jin, Xiao-Ya;Xu, Lan-Man;Chen, Yong-Ping
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.906-918
    • /
    • 2019
  • MicroRNA-223-3p (miR-223-3p) is one of the potential microRNAs that have been shown to alleviate inflammatory responses in pre-clinical investigations and is highly encased in exosomes derived from bone mesenchymal stem cells (MSC-exosomes). MSC-exosomes are able to function as carriers to deliver microRNAs into cells. Autoimmune hepatitis is one of the challenging liver diseases with no effective treatment other than steroid hormones. Here, we examined whether MSC-exosomes can transfer miR-223-3p to treat autoimmune hepatitis in an experimental model. We found that MSC-exosomes were successfully incorporated with miR-223-3p and delivered miR-223-3p into macrophages. Moreover, there was no toxic effect of exosomes on the macrophages. Furthermore, treatments of either exosomes or exosomes with miR-223-3p successfully attenuated inflammatory responses in the liver of autoimmune hepatitis and inflammatory cytokine release in both the liver and macrophages. The mechanism may be related to the regulation of miR-223-3p level and STAT3 expression in the liver and macrophages. These results suggest that MSC-exosomes can be used to deliver miR-223-3p for the treatment of autoimmune hepatitis.

Effects of Garcinia cambogia Extract on the Adipogenic Differentiation and Lipotoxicity (가르시니아 캄보지아 추출물의 지방세포 분화 및 지방 독성에 미치는 영향)

  • Kang, Eun Sil;Ham, Sun Ah;Hwang, Jung Seok;Lee, Chang-Kwon;Seo, Han Geuk
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.411-416
    • /
    • 2013
  • This study aimed to examine the mechanisms underlying the effects of Garcinia cambogia extract on the adipogenic differentiation of 3T3-L1 cells and long-chain saturated fatty acid-induced lipotoxicity of HepG2 cells. 3T3-L1 preadipocytes, mouse embryonic fibroblast-adipose like cell line, were treated with MDI solution (0.5 mM IBMX, 1 ${\mu}M$ dexamethasone, 10 ${\mu}g/mL$ insulin) to generate a cellular model of adipocyte differentiation. Using this cellular model, the anti-obesity effect of Garcinia cambogia extract was evaluated. MDI-induced lipid accumulation and expression of adipogenesis-related genes were detected by Oil red O staining, Nile Red staining, and Western blot analysis. Effects Garcinia cambogia extract on palmitate-induced lipotoxicity was also analyzed by MTT assay, LDH release, and DAPI staining in HepG2 cells. Garcinia cambogia extract significantly suppressed the adipogenic differentiation of preadipocytes and intracellular lipid accumulation in the differentiating adipocytes. Garcinia cambogia extract also markedly inhibited the expression of peroxisome proliferator- activated receptor ${\gamma}2$ ($PPAR{\gamma}2$), CCAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$), and adipocyte protein aP2 (aP2). In addition, Garcinia cambogia extract significantly attenuated palmitate-induced lipotoxicity in HepG2 cells. Palmitateinduced cellular damage and reactive aldehydes were also significantly reduced in the presence of Garcinia cambogia extract. These findings suggest that the Garcinia cambogia extract inhibits the adipogenic differentiation of 3T3-L1 preadipocytes, probably by regulating the expression of multiple genes associated with adipogenesis such as $PPAR{\gamma}2$, $C/EBP{\alpha}$, aP2, and thereby modulating fatty acid-induced lipotoxicity to reduce cellular injury in hepatocytes.

Evaluation of Heavy Metal Contamination in Streams within Samsanjeil and Sambong Cu Mining Area (삼산제일.삼봉 동광산 주변 수계의 중금속 오염도 평가)

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.171-187
    • /
    • 2006
  • The status of heavy metal contamination was investigated using chemical analyses of stream waters and sediments obtained from Samsanjeil and Sambong Cu mining area in Goseong-gun, Gyeongsangnam-do. In addition, the degree and the environmental risk of heavy metal contamination in stream sediments was assessed through pollution index (Pl) and danger index (DI) based on total digestion by aqua regia and fractionation of heavy metal contaminants by sequential extraction, respectively. Not only the degree of heavy metal contamination was significantly higher in Samsanjeil area than in Sambong area, but its environmental risk was also revealed much more serious in Samsanjeil area than in Sambong area. The differences in status and level of contamination and environmental risk between both two mining areas may be attributed to existence of contamination source and geology. Acid mine drainage is continuously discharged and flows into the stream in Samsanjeil mining area, and it makes the heavy metal contamination in the stream more deteriorated than in Sambong mining area in which acid mine drainage is not produced. In addition, the geology of Samsanjeil mining area is mainly comprised of andesitic rocks including a small amount of calcite and having lower pH buffering capacity fer acid mine drainage, and it is likely that the heavy metal contamination cannot be naturally attenuated in streams. On the contrary, the main geology of Sambong mining area consists of pyroclastic sedimentary Goseong formation containing a high content of carbonates, particularly calcite, and it seems that these carbonates of high pH buffering capacity prevent the heavy metal contamination from proceeding downstream in stream within that area.

Protective effects of kaempferol, quercetin, and its glycosides on amyloid beta-induced neurotoxicity in C6 glial cell (Kaempferol, quercetin 및 그 배당체의 amyloid beta 유도 신경독성에 대한 C6 신경교세포 보호 효과)

  • Kim, Ji Hyun;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.327-332
    • /
    • 2019
  • Alzheimer's disease (AD) is a common neurodegenerative disease. Oxidative stress by amyloid beta peptide (Aβ) of neuronal cell is the most cause of AD. In the present study, protective effects of several flavonoids such as kaempferol (K), kaempferol-3-O-glucoside (KG), quercetin (Q) and quercetin-3-β-ᴅ-glucoside (QG) from Aβ25-35 were investigated using C6 glial cell. Treatment of Aβ25-35 to C6 glial cell showed decrease of cell viability, while treatment of flavonoids such as Q and QG increased cell viability. In addition, treatment of flavonoids declined reactive oxygen species (ROS) production compared with Aβ25-35-induced control. The ROS production was increased by treatment of Aβ25-35 to 133.39%, while KG and QG at concentration of 1 μM decreased ROS production to 107.44 and 113.10%, respectively. To study mechanisms of protective effect of these flavonoids against Aβ25-35, the protein expression related to inflammation under Aβ25-35-induced C6 glial cell was investigated. The results showed that C6 glial cell under Aβ25-35-induced oxidative stress up-regulated inflammation-related protein expressions. However, treatment of flavonoids led to reduction of protein expression such as inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-1β. Especially, treatment of KG and QG decreased more effectively inflammation-related protein expression than its aglycones, K and Q. Therefore, the present results indicated that K, Q and its glycosides attenuated Aβ25-35-induced neuronal oxidative stress and inflammation.

Immunomodulatory Activity of Water Extract of Ulmus macrocarpa in Macrophages (유근피 추출물이 대식세포 면역조절에 미치는 영향)

  • Kwon, Da Hye;Kang, Hye-Joo;Choi, Yung Hyun;Chung, Kyung Tae;Lee, Jong Hwan;Kang, Kyung Hwa;Hyun, Sook Kyung;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2016
  • The root bark of Ulmus macrocarpa has been used in traditional medicine for the treatment of various diseases such as edema, infection and inflammation. Nevertheless, the biological activities and underlying mechanisms of the immunomodulatory effects remain unclear. In this study, as part of our ongoing screening program to evaluate the immunomodulatory potential of new compounds from traditional medicinal resources, we investigated the effects of U. macrocarpa water extract (UME) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the productions of as nitric oxide (NO) and cytokines such tumor necrotic factor (TNF)-α, interleukin (IL)-1β and IL-10 were evaluated. Although the release of IL-1β remained unchanged in UME-treated RAW 264.7 macrophages, the productions of NO, TNF-α and IL-10 were significantly increased, along with the increased expression of inducible NO synthase, TNF-α and IL-10 expression at concentrations with no cytotoxicity. UME treatment also induced the nuclear translocation of nuclear factor κB (NF-κB), and phosphorylation of Akt and mitogen-activated protein kinases (MAPKs) indicating that UME activated macrophages through the activation of NF-κB, phosphoinositide-3-kinase (PI3K)/Akt and MAPKs signaling pathways in RAW 264.7 macrophages. Furthermore, pre-treatment with UME significantly attenuated the production of NO, but not TNF-α, IL-1β and IL-10, in lipopolysaccharide-stimulated RAW 264.7 cells suggesting that UME may be useful in preventing inflammatory diseases mediated by excessive production of NO. These findings suggest that the beneficial therapeutic effects of UME may be attributed partly to its ability to modulate immune functions in macrophages.

Attenuation of the Corticosterone-induced Antiproliferative Effect on Human Neuroblastoma SH-SY5Y Cells Using Hot-water Extract from Liriope muscari (Corticosterone에 의해 유도된 인간의 신경모세포종 SH-SY5Y 세포 증식 억제를 완화시키는 맥문동 열수 추출물의 효과에 관한 연구)

  • Lee, Jong Kyu;Kim, Sang-Bo;Seo, Yong Bae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.517-523
    • /
    • 2018
  • Elevated levels of cortisol caused by chronic stress may lead to neuron damage in the hippocampus by activating the glucocorticoid receptors (GRs). In cortisol-deficient animals, corticosterone is known to function as a stress hormone. In humans however, corticosterone is considered a precursor of aldosterone and a glucocorticoid with similar properties to cortisol. Recently, many studies have been conducted on the role of cortisol and other synthetic glucocorticoids like dexamethasone in humans, but the exact function of corticosterone is unknown. This study examined the viability of human neuroblastoma SH-SY5Y cells treated with various concentrations of corticosterone for 24 and 48 hr via MTT assay. The MTT-assay results showed that corticosterone had an antiproliferation effect on SH-SY5Y cells at higher concentrations (500 and $1,000{\mu}M$), while in lower concentrations ($100{\mu}M$), it showed no antiproliferation effect. Cytotoxicity analysis of extracts from three medicinal crops (Liriope muscari, Schisandra chinensis, and Wolfiporia extensa) revealed that they all possessed deleterious effects on SH-SY5Y cells depending on dosage. However, it was observed that, at a concentration of $500{\mu}g/ml$, Liriope muscari attenuated the corticosterone-induced antiproliferation on SY-SH5Y cells and restored cell growth after 48 hours of treatment. The study examined the synergistic effect of six mixtures each containing $500{\mu}g/ml$ of Liriope and various concentrations of Schisandra (50 or $100{\mu}g/ml$) and Wolfiporia (10, 30, and $50{\mu}g/ml$). The results showed minor growth-restoration activity but less than that of Liriope muscari only, suggesting that Schisandra and Wolfiporia had no additive or synergistic effects.

Induction of Systemic and Mucosal Immune Responses in Mice Orally Administered with Recombinant Attenuated Salmonella Expressing Subunits of P Fimbriae of Avian Pathogenic Escherichia coli (마우스에서 조류 병원성 대장균의 P Fimbriae subunits을 발현하는 약독화 살모넬라균 경구 접종 후 면역 반응 유도 실험)

  • Oh, In-Gyeong;Moon, Bo-Mi;Lee, John-Hwa;Hur, Jin
    • Journal of Veterinary Clinics
    • /
    • v.28 no.3
    • /
    • pp.297-302
    • /
    • 2011
  • Avian pathogenic Escherichia coli (APEC) causes a number of extraintestinal diseases in poultry. A virulence factor, P-fimbriae is firmly associated with the diseases. In this study, to develop an effective vaccine for the prevention of APEC, recombinant attenuatted Salmonella Typhimurium vaccines expressing PapA and PapG of P-fimbriae were evaluated whether these induced protective immune responses in murine models. Female BALB/c mice were primed and boosted orally at 7 and 10 weeks of age. In all immunized mice, the antigen-specific serum IgG levels were remained higher than those in the control mice from the fourth week post inoculation till the end of this study. In addition, antigen-specific serum IgG levels in the prime-booster immunized mice were enhanced as compared to the single immunized mice among each immunized group. The antigen-specific mucosal IgA levels in the mice immunized with each strain also induced higher than those in control mice. In addition, serum IgG and fecal IgA levels in mice administered with the combination of both strains were highly induced compared to those in mice immunized with each strain alone. These results indicated that PapA and PapG worked together for inducing high immune responses. To partly discern the nature of immunity induced by the strains, we quantified serum IgG subtypes IgG1 and IgG2a specific to antigens. The PapA and PapG strains biased the immunity to the Th1-type, as determined by the IgG2a/IgG1 ratio. On the other hand, the immunization with the both strains in combination produced mixed Th1- and Th2-type immune responses. These indicated that immunization with the combination of PapA and PapG could elicit both humoral and cell-mediated immunities.