DOI QR코드

DOI QR Code

Attenuation of the Corticosterone-induced Antiproliferative Effect on Human Neuroblastoma SH-SY5Y Cells Using Hot-water Extract from Liriope muscari

Corticosterone에 의해 유도된 인간의 신경모세포종 SH-SY5Y 세포 증식 억제를 완화시키는 맥문동 열수 추출물의 효과에 관한 연구

  • Lee, Jong Kyu (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Kim, Sang-Bo (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Seo, Yong Bae (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
  • 이종규 (부경대학교 자연과학대학 미생물학과) ;
  • 김상보 (부경대학교 자연과학대학 미생물학과) ;
  • 서용배 (부경대학교 자연과학대학 미생물학과) ;
  • 김군도 (부경대학교 자연과학대학 미생물학과)
  • Received : 2018.01.02
  • Accepted : 2018.05.18
  • Published : 2018.05.30

Abstract

Elevated levels of cortisol caused by chronic stress may lead to neuron damage in the hippocampus by activating the glucocorticoid receptors (GRs). In cortisol-deficient animals, corticosterone is known to function as a stress hormone. In humans however, corticosterone is considered a precursor of aldosterone and a glucocorticoid with similar properties to cortisol. Recently, many studies have been conducted on the role of cortisol and other synthetic glucocorticoids like dexamethasone in humans, but the exact function of corticosterone is unknown. This study examined the viability of human neuroblastoma SH-SY5Y cells treated with various concentrations of corticosterone for 24 and 48 hr via MTT assay. The MTT-assay results showed that corticosterone had an antiproliferation effect on SH-SY5Y cells at higher concentrations (500 and $1,000{\mu}M$), while in lower concentrations ($100{\mu}M$), it showed no antiproliferation effect. Cytotoxicity analysis of extracts from three medicinal crops (Liriope muscari, Schisandra chinensis, and Wolfiporia extensa) revealed that they all possessed deleterious effects on SH-SY5Y cells depending on dosage. However, it was observed that, at a concentration of $500{\mu}g/ml$, Liriope muscari attenuated the corticosterone-induced antiproliferation on SY-SH5Y cells and restored cell growth after 48 hours of treatment. The study examined the synergistic effect of six mixtures each containing $500{\mu}g/ml$ of Liriope and various concentrations of Schisandra (50 or $100{\mu}g/ml$) and Wolfiporia (10, 30, and $50{\mu}g/ml$). The results showed minor growth-restoration activity but less than that of Liriope muscari only, suggesting that Schisandra and Wolfiporia had no additive or synergistic effects.

만성적 스트레스가 있는 상황에서, 과잉 생산된 cortisol은 glucocorticoid receptor (GR)를 활성화시킴으로써 해마(hippocampus)에 있는 신경 세포에 손상을 줄 수 있다. Cortisol을 생성하지 못하는 동물들의 경우, corticosterone이 스트레스 호르몬의 역할을 하는 것으로 알려져 있다. 한편, 인간의 경우, corticosterone은 aldosterone의 전구물질 이거나 cortisol과 비슷한 특성을 가지는 하나의 glucocorticoid로만 여겨져 왔다. 최근 인간을 대상으로 cortisol과 dexamethasone과 같은 합성 glucocorticoid의 기능에 관한 연구가 많이 이루어져 왔으나, corticosterone의 정확한 기능에 대하여 많이 알려져 있지 않다. 본 연구에서 corticosterone을 여러 농도로 SH-SY5Y 세포에 처리한 후 24시간과 48시간 때 viability를 조사한 결과, 높은 농도($500{\mu}M$$1,000{\mu}M$)에서 SH-SY5Y 세포의 성장 억제가 관찰된 반면, 낮은 농도($100{\mu}M$)에선 그 효과가 나타나지 않았다. 맥문동, 오미자, 복신 열수 추출물에 대한 세포 독성을 실시한 결과, 세 시료 모두 농도가 높아질수록 높은 세포 독성을 보였다. 한편, $500{\mu}g/ml$의 맥문동은 corticosterone에 의해 유도된 세포 성장 억제를 완화시켜 세포 성장을 회복시키는 효과를 보였다. 마지막으로, 맥문동 $500{\mu}g/ml$에 오미자와 복신의 농도를 달리하여 제조한 여러 혼합물의 시너지 효과를 알아본 결과, 대부분 혼합물이 약간의 효과를 보이긴 했으나, 음성 대조군 수준만큼 회복되지는 않았다.

Keywords

References

  1. Aguilera, G. 2011. HPA axis responsiveness to stress: Implications for healthy aging. Exp. Gerontol. 46, 90-95. https://doi.org/10.1016/j.exger.2010.08.023
  2. Budni, J., Romero, A., Molz, S., Martin-de-Saavedra, M. D., Egea, J., Del Barrio, L., Tasca, C. I., Rodrigues, A. L. and Lopez, M. G. 2011. Neurotoxicity induced by dexamethasone in the human neuroblastoma SH-SY5Y cell line can be prevented by folic acid. Neuroscience 190, 346-353. https://doi.org/10.1016/j.neuroscience.2011.05.053
  3. Chang, L. C., Madsen, S. A., Toelboell, T., Weber, P. S. and Burton, J. L. 2004. Effects of glucocorticoids on Fas gene expression in bovine blood neutrophils. J. Endocrinol. 183, 569-583. https://doi.org/10.1677/joe.1.05822
  4. Chun, J. N., Cho, M., So, I. and Jeon, J. H. 2014. The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: A review of the molecular mechanisms. Fitoterapia 97, 224-233. https://doi.org/10.1016/j.fitote.2014.06.014
  5. Crochemore, C., Michaelidis, T. M., Fischer, D., Loeffler, J. P. and Almeida, O. F. 2002. Enhancement of p53 activity and inhibition of neural cell proliferation by glucocorticoid receptor activation. FASEB J. 16, 761-770. https://doi.org/10.1096/fj.01-0577com
  6. Glick, R. D., Medary, I., Aronson, D. C., Scotto, K. W., Swendeman, S. L. and La Quaglia, M. P. 2000. The effects of serum depletion and dexamethasone on growth and differentiation of human neuroblastoma cell lines. J. Pediatr. Surg. 35, 465-472. https://doi.org/10.1016/S0022-3468(00)90216-1
  7. Goldstein, D. S. 2010. Adrenal responses to stress. Cell. Mol. Neurobiol. 30, 1433-1440. https://doi.org/10.1007/s10571-010-9606-9
  8. Goodwin, J. S., Atluru, D., Sierakowski, S. and Lianos, E. A. 1986. Mechanism of action of glucocorticosteroids. Inhibition of T cell proliferation and interleukin 2 production by hydrocortisone is reversed by leukotriene B4. J. Clin. Invest. 77, 1244-1250. https://doi.org/10.1172/JCI112427
  9. Haynes, L. E., Griffiths, M. R., Hyde, R. E., Barber, D. J. and Mitchell, I. J. 2001. Dexamethasone induces limited apoptosis and extensive sublethal damage to specific subregions of the striatum and hippocampus: Implications for mood disorders. Neuroscience 104, 57-69. https://doi.org/10.1016/S0306-4522(01)00070-7
  10. Johnson, S., Williams, A. N., Johnson, C. and Ou, X. M. 2007. The effects of antidepressant drug on ethanol-induced cell death. Drug Discov. Ther. 1, 130-135.
  11. Johnson, S., Tazik, S., Lu, D., Johnson, C., Youdim, M. B., Wang, J., Rajkowska, G. and Ou, X. M. 2010. The new inhibitor of monoamine oxidase, M30, has a neuroprotective effect against dexamethasone-induced brain cell apoptosis. Front. Neurosci. 4, 180.
  12. von Langen, J., Fritzemeier, K. H., Diekmann, S. and Hillisch, A. 2005. Molecular basis of the interaction specificity between the human glucocorticoid receptor and its endogenous steroid ligand cortisol. Chembiochem 6, 1110-1118. https://doi.org/10.1002/cbic.200400361
  13. Leskiewicz, M., Jantas, D., Regulska, M., Kaczanowska, J., Basta-Kaim, A., Budziszewska, B., Kubera, M. and Lason, W. 2013. Antidepressants attenuate the dexamethasone-induced decrease in viability and proliferation of human neuroblastoma SH-SY5Y cells: A involvement of extracellular regulated kinase (ERK1/2). Neurochem. Int. 63, 354-362. https://doi.org/10.1016/j.neuint.2013.07.007
  14. Lin, H. Y., Muller, Y. A. and Hammond, G. L. 2010. Molecular and structural basis of steroid hormone binding and release from corticosteroid-binding globulin. Mol. Cell. Endocrinol. 316, 3-12. https://doi.org/10.1016/j.mce.2009.06.015
  15. McEwen, B. S. 2008. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 583, 174-185. https://doi.org/10.1016/j.ejphar.2007.11.071
  16. Morris, D. J. 2015. Why do humans have two glucocorticoids: A question of intestinal fortitude. Steroids 102, 32-38. https://doi.org/10.1016/j.steroids.2015.06.017
  17. New, M. I., Seaman, M. P. and Peterson, R. E. 1969. A method for the simultaneous determination of the secretion rates of cortisol, 11-desoxycortisol, corticosterone, 11-desoxycorticosterone and aldosterone. J. Clin. Endocrinol. Metab. 29, 514-522. https://doi.org/10.1210/jcem-29-4-514
  18. Ou, X. M., Chen, K. and Shih, J. C. 2006. Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. J. Biol. Chem. 281, 21512-21525. https://doi.org/10.1074/jbc.M600250200
  19. Pratt, W. B. 1978. The Mechanism of glucocorticoid effects in fibroblasts. J. Invest. Dermatol. 71, 24-35. https://doi.org/10.1111/1523-1747.ep12543774
  20. Ramalingam, A., Hirai, A. and Thompson, E. A. 1997. Glucocorticoid inhibition of fibroblast proliferation and regulation of the cyclin kinase inhibitor p21Cip1. Mol. Endocrinol. 11, 577-586. https://doi.org/10.1210/mend.11.5.9923
  21. Ranabir, S. and Reetu, K. 2011. Stress and hormones. Indian J. Endocrinol. Metab. 15, 18-22. https://doi.org/10.4103/2230-8210.77573
  22. Sapolsky, R. M. 1996. Stress, glucocorticoids, and damage to the nervous system: The current state of confusion. Stress 1, 1-19. https://doi.org/10.3109/10253899609001092
  23. Schmidt, S., Rainer, J., Ploner, C., Presul, E., Riml, S. and Kofler, R. 2004. Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ. 11, S45-S55. https://doi.org/10.1038/sj.cdd.4401456
  24. Suwanjang, W., Abramov, A. Y., Charngkaew, K., Govitrapong, P. and Chetsawang, B. 2016. Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Neurochem. Int. 97, 34-41. https://doi.org/10.1016/j.neuint.2016.05.003
  25. Suwanjang, W., Abramov, A. Y., Govitrapong, P. and Chetsawang, B. 2013. Melatonin attenuates dexamethasone toxicity-induced oxidative stress, calpain and caspase activation in human neuroblastoma SH-SY5Y cells. J. Steroid Biochem. Mol. Biol. 138, 116-122. https://doi.org/10.1016/j.jsbmb.2013.04.008
  26. Tazik, S., Johnson, S., Lu, D., Johnson, C., Youdim, M. B., Stockmeier, C. A. and Ou, X. M. 2009. Comparative neuroprotective effects of rasagiline and aminoindan with selegiline on dexamethasone-induced brain cell apoptosis. Neurotox. Res. 15, 284-290. https://doi.org/10.1007/s12640-009-9030-4
  27. Ward, G. R., Franklin, S. O., Gerald, T. M., Dempsey, K. T., Clodfelter, D. E., Krissinger, D. J., Patel, K. M., Vrana, K. E. and Howlett, A. C. 2007. Glucocorticoids plus opioids up-regulate genes that influence neuronal function. Cell. Mol. Neurobiol. 27, 651-660. https://doi.org/10.1007/s10571-007-9151-3
  28. Youdim, M. B., Banerjee, D. K., Kelner, K., Offutt, L. and Pollard, H. B. 1989. Steroid regulation of monoamine oxidase activity in the adrenal medulla. FASEB J. 3, 1753-1759. https://doi.org/10.1096/fasebj.3.6.2495232