DOI QR코드

DOI QR Code

Attenuation of Experimental Autoimmune Hepatitis in Mice with Bone Mesenchymal Stem Cell-Derived Exosomes Carrying MicroRNA-223-3p

  • Lu, Feng-Bin (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology) ;
  • Chen, Da-Zhi (Department of Gastroenterology, The First Hospital of Peking University) ;
  • Chen, Lu (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology) ;
  • Hu, En-De (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology) ;
  • Wu, Jin-Lu (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology) ;
  • Li, Hui (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology) ;
  • Gong, Yue-Wen (College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba) ;
  • Lin, Zhuo (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology) ;
  • Wang, Xiao-Dong (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology) ;
  • Li, Ji (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology) ;
  • Jin, Xiao-Ya (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology) ;
  • Xu, Lan-Man (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology) ;
  • Chen, Yong-Ping (Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Hepatology Institute of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology)
  • Received : 2017.10.30
  • Accepted : 2019.11.25
  • Published : 2019.12.31

Abstract

MicroRNA-223-3p (miR-223-3p) is one of the potential microRNAs that have been shown to alleviate inflammatory responses in pre-clinical investigations and is highly encased in exosomes derived from bone mesenchymal stem cells (MSC-exosomes). MSC-exosomes are able to function as carriers to deliver microRNAs into cells. Autoimmune hepatitis is one of the challenging liver diseases with no effective treatment other than steroid hormones. Here, we examined whether MSC-exosomes can transfer miR-223-3p to treat autoimmune hepatitis in an experimental model. We found that MSC-exosomes were successfully incorporated with miR-223-3p and delivered miR-223-3p into macrophages. Moreover, there was no toxic effect of exosomes on the macrophages. Furthermore, treatments of either exosomes or exosomes with miR-223-3p successfully attenuated inflammatory responses in the liver of autoimmune hepatitis and inflammatory cytokine release in both the liver and macrophages. The mechanism may be related to the regulation of miR-223-3p level and STAT3 expression in the liver and macrophages. These results suggest that MSC-exosomes can be used to deliver miR-223-3p for the treatment of autoimmune hepatitis.

Keywords

References

  1. Ailawadi, S., Wang, X., Gu, H., and Fan, G.C. (2015). Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim. Biophys. Acta 1852, 1-11. https://doi.org/10.1016/j.bbadis.2014.10.008
  2. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M.J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341-345. https://doi.org/10.1038/nbt.1807
  3. An Haack, I., Derkow, K., Riehn, M., Rentinck, M.N., Kuhl, A.A., Lehnardt, S., and Schott, E. (2015). The role of regulatory CD4 T cells in maintaining tolerance in a mouse model of autoimmune hepatitis. PLoS One 10, e0143715. https://doi.org/10.1371/journal.pone.0143715
  4. Bang, C., Batkai, S., Dangwal, S., Gupta, S.K., Foinquinos, A., Holzmann, A., Just, A., Remke, J., Zimmer, K., Zeug, A., et al. (2014). Cardiac fibroblastderived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest. 124, 2136-2146. https://doi.org/10.1172/JCI70577
  5. Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., and Kuchroo, V.K. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238. https://doi.org/10.1038/nature04753
  6. Chen, Q., Wang, H., Liu, Y., Song, Y., Lai, L., Han, Q., Cao, X., and Wang, Q. (2012). Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3. PLoS One 7, e42971. https://doi.org/10.1371/journal.pone.0042971
  7. Chen, Y., Chen, S., Liu, L., Zou, Z., Cai, Y., Wang, J., Chen, B., Xu, L., Lin, Z., Wang, X., et al. (2014). Mesenchymal stem cells ameliorate experimental autoimmune hepatitis by activation of the programmed death 1 pathway. Immunol. Lett. 162, 222-228. https://doi.org/10.1016/j.imlet.2014.10.021
  8. Chen, Z., Laurence, A., and O'shea, J. (2007). Signal transduction pathways and transcriptional regulation in the control of Th17 differentiatio. Semin. Immunol. 19, 400-408. https://doi.org/10.1016/j.smim.2007.10.015
  9. Colombo, M., Raposo, G., and Thery, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326
  10. Costa-Silva, B., Aiello, N.M., Ocean, A.J., Singh, S., Zhang, H., Thakur, B.K., Becker, A., Hoshino, A., Mark, M.T., Molina, H., et al. (2015). Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816-826. https://doi.org/10.1038/ncb3169
  11. Deknuydt, F., Bioley, G., Valmori, D., and Ayyoub, M. (2009). IL-1beta and IL-2 convert human Treg into T(H)17 cells. Clin. Immunol. 131, 298-307. https://doi.org/10.1016/j.clim.2008.12.008
  12. Du, Z., Wei, C., Cheng, K., Han, B., Yan, J., Zhang, M., Peng, C., and Liu, Y. (2013). Mesenchymal stem cell-conditioned medium reduces liver injury and enhances regeneration in reduced-size rat liver transplantation. J. Surg. Res. 183, 907-915. https://doi.org/10.1016/j.jss.2013.02.009
  13. Eisenstein, E.M. and Williams, C.B. (2009). The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatr. Res. 65, 26R-31R. https://doi.org/10.1203/PDR.0b013e31819e76c7
  14. Eldh, M., Ekstrom, K., Valadi, H., Sjostrand, M., Olsson, B., Jernas, M., and Lotvall, J. (2010). Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 5, e15353. https://doi.org/10.1371/journal.pone.0015353
  15. Gatti, S., Bruno, S., Deregibus, M.C., Sordi, A., Cantaluppi, V., Tetta, C., and Camussi, G. (2011). Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant. 26, 1474-1483. https://doi.org/10.1093/ndt/gfr015
  16. Hammerich, L., Heymann, F., and Tacke, F. (2011). Role of IL-17 and Th17 cells in liver diseases. Clin. Dev. Immunol. 2011, 345803.
  17. Heneghan, M.A., Yeoman, A.D., Verma, S., Smith, A.D., and Longhi, M.S. (2013). Autoimmune hepatitis. Lancet 382, 1433-1444. https://doi.org/10.1016/S0140-6736(12)62163-1
  18. Kato, M., Ikeda, N., Matsushita, E., Kaneko, S., and Kobayashi, K. (2001). Involvement of IL-10, an anti-inflammatory cytokine in murine liver injury induced by Concanavalin A. Hepatol. Res. 20, 232-243. https://doi.org/10.1016/S1386-6346(00)00137-6
  19. Kordelas, L., Rebmann, V., Ludwig, A.K., Radtke, S., Ruesing, J., Doeppner, T.R., Epple, M., Horn, P.A., Beelen, D.W., and Giebel, B. (2014). MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28, 970-973. https://doi.org/10.1038/leu.2014.41
  20. Le Blanc, K. and Mougiakakos, D. (2012). Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunology 12, 383-396. https://doi.org/10.1038/nri3209
  21. Li, M., He, Y., Zhou, Z., Ramirez, T., Gao, Y., Gao, Y., Ross, R.A., Cao, H., Cai, Y., Xu, M., et al. (2017). MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47phox-oxidative stress pathway in neutrophils. Gut 66, 705-715. https://doi.org/10.1136/gutjnl-2016-311861
  22. Lin, R., Zhang, J., Zhou, L., and Wang, B. (2016). Altered function of monocytes/macrophages in patients with autoimmune hepatitis. Mol. Med. Rep. 13, 3874-3880. https://doi.org/10.3892/mmr.2016.4998
  23. Lohse, A., Dienes, H.P., and Buschenfelde, K.H.M.Z. (1998). Suppression of murine experimental autoimmune hepatitis by T-cell vaccination or immunosuppression. Hepatology 27, 1536-1543. https://doi.org/10.1002/hep.510270611
  24. Lohse, A.W., Manns, M., Dienes, H.P., Meyer zum Buschenfelde, K.H., and Cohen, I.R. (1990). Experimental autoimmune hepatitis: disease induction, time course and T-cell reactivity. Hepatology 11, 24-30. https://doi.org/10.1002/hep.1840110106
  25. Longhi, M.S., Ma, Y., Mieli-Vergani, G., and Vergani, D. (2010). Aetiopathogenesis of autoimmune hepatitis. J. Autoimmun. 34, 7-14. https://doi.org/10.1016/j.jaut.2009.08.010
  26. Longhi, M.S., Mitry, R.R., Samyn, M., Scalori, A., Hussain, M.J., Quaglia, A., Mieli-Vergani, G., Ma, Y., and Vergani, D. (2009). Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T-cells. Hepatology 50, 130-142. https://doi.org/10.1002/hep.22914
  27. Lyu, L., Wang, H., Li, B., Qin, Q., Qi, L., Nagarkatti, M., Nagarkatti, P., Janicki, J.S., Wang, X.L., and Cui, T. (2015). A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J. Mol. Cell. Cardiol. 89, 268-279. https://doi.org/10.1016/j.yjmcc.2015.10.022
  28. Maggiore, G., De Benedetti, F., Massa, M., Pignatti, P., and Martini, A. (1995). Circulating levels of interleukin-6, interleukin-8, and tumor necrosis factor-alpha in children with autoimmune hepatitis. J. Pediatr. Gastroenterol. Nutr. 20, 23-27. https://doi.org/10.1097/00005176-199501000-00005
  29. Manns, M.P., Czaja, A.J., Gorham, J.D., Krawitt, E.L., Mieli-Vergani, G., Vergani, D., and Vierling, J.M. (2010). Diagnosis and management of autoimmune hepatitis. Hepatology 51, 2193-2213. https://doi.org/10.1002/hep.23584
  30. Meirelles Lda, S. and Nardi, N.B. (2003). urine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br. J. Haematol. 123, 702-711. https://doi.org/10.1046/j.1365-2141.2003.04669.x
  31. Peiseler, M., Sebode, M., Franke, B., Wortmann, F., Schwinge, D., Quaas, A., Baron, U., Olek, S., Wiegard, C., Lohse, A.W., et al. (2012). FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J. Hepatol. 57, 125-132. https://doi.org/10.1016/j.jhep.2012.02.029
  32. Raposo, G. and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373-383. https://doi.org/10.1083/jcb.201211138
  33. Sadallah, S., Eken, C., and Schifferli, J.A. (2011). Ectosomes as modulators of inflammation and immunity. Clin. Exp. Immunol. 163, 26-32. https://doi.org/10.1111/j.1365-2249.2010.04271.x
  34. Selvarajah, V., Montano-Loza, A.J., and Czaja, A.J. (2012). Systematic review: managing suboptimal treatment responses in autoimmune hepatitis with conventional and nonstandard drugs. Aliment. Pharmacol. Ther. 36, 691-707. https://doi.org/10.1111/apt.12042
  35. Shigemoto-Kuroda, T., Oh, J.Y., Kim, D.K., Jeong, H.J., Park, S.Y., Lee, H.J., Park, J.W., Kim, T.W., An, S.Y., Prockop, D.J., et al. (2017). MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: type 1 diabetes and uveoretinitis. Stem Cell Reports 8, 1214-1225. https://doi.org/10.1016/j.stemcr.2017.04.008
  36. Taibi, F., Metzinger-Le Meuth, V., Massy, Z.A., and Metzinger, L. (2014). miR-223: An inflammatory oncomiR enters the cardiovascular field. Biochim. Biophys. Acta 1842, 1001-1009. https://doi.org/10.1016/j.bbadis.2014.03.005
  37. Tan, C.Y., Lai, R.C., Wong, W., Dan, Y.Y., Lim, S.K., and Ho, H.K. (2014). Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther. 5, 76. https://doi.org/10.1186/scrt465
  38. Thery, C., Amigorena, S., Raposo, G., and Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22.
  39. Wang, L., Du, H., Liu, Y., Wang, L., Ma, X., and Zhang, W. (2015a). Chinese medicine bu xu hua yu recipe for the regulation of treg/th17 ratio imbalance in autoimmune hepatitis. Evid. Based Complement. Alternat. Med. 2015, 461294.
  40. Wang, X., Gu, H., Qin, D., Yang, L., Huang, W., Essandoh, K., Wang, Y., Caldwell, C.C., Peng, T., Zingarelli, B., et al. (2015b). Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci. Rep. 5, 13721. https://doi.org/10.1038/srep13721
  41. Wang, X., Huang, W., Yang, Y., Wang, Y., Peng, T., Chang, J., Caldwell, C.C., Zingarelli, B., and Fan, G.C. (2014). Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis. Biochim. Biophys. Acta 1842, 701-711. https://doi.org/10.1016/j.bbadis.2014.01.012
  42. Wang, X., Zingarelli, B., O'Connor, M., Zhang, P., Adeyemo, A., Kranias, E.G., Wang, Y., and Fan, G.C. (2009). Overexpression of Hsp20 prevents endotoxin-induced myocardial dysfunction and apoptosis via inhibition of NF-kappaB activation. J. Mol. Cell. Cardiol. 47, 382-390. https://doi.org/10.1016/j.yjmcc.2009.05.016
  43. Wang, Y., Han, Z.B., Song, Y.P., and Han, Z.C. (2012). Safety of mesenchymal stem cells for clinical application. Stem Cells Int. 2012, 652034. https://doi.org/10.1155/2012/652034
  44. Xin, H., Li, Y., Buller, B., Katakowski, M., Zhang, Y., Wang, X., Shang, X., Zhang, Z.G., and Chopp, M. (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30, 1556-1564. https://doi.org/10.1002/stem.1129
  45. Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., Zhang, Z.G., and Chopp, M. (2013). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31, 2737-2746. https://doi.org/10.1002/stem.1409
  46. Yu, B., Kim, H.W., Gong, M., Wang, J., Millard, R.W., Wang, Y., Ashraf, M., and Xu, M. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int. J. Cardiol. 182, 349-360. https://doi.org/10.1016/j.ijcard.2014.12.043
  47. Zhao, L., Tang, Y., You, Z., Wang, Q., Liang, S., Han, X., Qiu, D., Wei, J., Liu, Y., Shen, L., et al. (2011). Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLoS One 6, e18909. https://doi.org/10.1371/journal.pone.0018909
  48. Zhao, R., Zhou, H., and Su, S.B. (2013). A critical role for interleukin-$1{\beta}$ in the progression of autoimmune diseases. Int. Immunopharmacol. 17, 658-669. https://doi.org/10.1016/j.intimp.2013.08.012
  49. Zhao, X., Shi, X., Zhang, Z., Ma, H., Yuan, X., and Ding, Y. (2016). Combined treatment with MSC transplantation and neutrophil depletion ameliorates D-GalN/LPS-induced acute liver failure in rats. Clin. Res. Hepatol. Gastroenterol. 40, 730-738. https://doi.org/10.1016/j.clinre.2016.04.003

Cited by

  1. Exosomal MicroRNAs as Mediators of Cellular Interactions Between Cancer Cells and Macrophages vol.11, 2019, https://doi.org/10.3389/fimmu.2020.01167
  2. Therapeutic miRNA-Enriched Extracellular Vesicles: Current Approaches and Future Prospects vol.9, pp.10, 2020, https://doi.org/10.3390/cells9102271
  3. Mesenchymal stem cell-derived extracellular vesicles alter disease outcomes via endorsement of macrophage polarization vol.11, pp.1, 2019, https://doi.org/10.1186/s13287-020-01937-8
  4. Mesenchymal stem cell-based treatment in autoimmune liver diseases: underlying roles, advantages and challenges vol.12, 2021, https://doi.org/10.1177/2040622321993442
  5. Mesenchymal Stem Cell-Derived Exosomes: Biological Function and Their Therapeutic Potential in Radiation Damage vol.10, pp.1, 2021, https://doi.org/10.3390/cells10010042
  6. Therapeutic prospects of MicroRNAs carried by mesenchymal stem cells-derived extracellular vesicles in autoimmune diseases vol.277, 2019, https://doi.org/10.1016/j.lfs.2021.119458
  7. Multiple targets identified with genome wide profiling of small RNA and mRNA expression are linked to fracture healing in mice vol.15, 2019, https://doi.org/10.1016/j.bonr.2021.101115