DOI QR코드

DOI QR Code

Augmenter of Liver Regeneration Alleviates Renal Hypoxia-Reoxygenation Injury by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cells

  • Long, Rui-ting (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University) ;
  • Peng, Jun-bo (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University) ;
  • Huang, Li-li (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University) ;
  • Jiang, Gui-ping (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University) ;
  • Liao, Yue-juan (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University) ;
  • Sun, Hang (Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University) ;
  • Hu, Yu-dong (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University) ;
  • Liao, Xiao-hui (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University)
  • Received : 2019.03.30
  • Accepted : 2019.11.19
  • Published : 2019.12.31

Abstract

Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes that closely related to their function. Disruption of mitochondrial dynamics has been demonstrated in acute kidney injury (AKI), which could eventually result in cell injury and death. Previously, we reported that augmenter of liver regeneration (ALR) alleviates renal tubular epithelial cell injury. Here, we gained further insights into whether the renoprotective roles of ALR are associated with mitochondrial dynamics. Changes in mitochondrial dynamics were examined in experimental models of renal ischemia-reperfusion (IR). In a model of hypoxia-reoxygenation (HR) injury in vitro, dynamin-related protein 1 (Drp1) and mitochondrial fission process protein 1 (MTFP1), two key proteins of mitochondrial fission, were downregulated in the Lv-ALR + HR group. ALR overexpression additionally had an impact on phosphorylation of Drp1 Ser637 during AKI. The inner membrane fusion protein, Optic Atrophy 1 (OPA1), was significantly increased whereas levels of outer membrane fusion proteins Mitofusin-1 and -2 (Mfn1, Mfn2) were not affected in the Lv-ALR + HR group, compared with the control group. Furthermore, the mTOR/4E-BP1 signaling pathway was highly activated in the Lv-ALR + HR group. ALR overexpression led to suppression of HR-induced apoptosis. Our collective findings indicate that ALR gene transfection alleviates mitochondrial injury, possibly through inhibiting fission and promoting fusion of the mitochondrial inner membrane, both of which contribute to reduction of HK-2 cell apoptosis. Additionally, fission processes are potentially mediated by promoting tubular cell survival through activating the mTOR/4E-BP1 signaling pathway.

Keywords

References

  1. Aung, L.H.H., Li, R., Prabhakar, B.S., and Li, P. (2017). Knockdown of Mtfp1 can minimize doxorubicin cardiotoxicity by inhibiting Dnm1l-mediated mitochondrial fission. J. Cell. Mol. Med. 21, 3394-3404. https://doi.org/10.1111/jcmm.13250
  2. Bhargava, P. and Schnellmann, R.G. (2017). Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 13, 629-646. https://doi.org/10.1038/nrneph.2017.107
  3. Brooks, C., Wei, Q., Cho, S.G., and Dong, Z. (2009). Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275-1285. https://doi.org/10.1172/JCI37829
  4. Brooks, C., Wei, Q., Feng, L., Dong, G., Tao, Y., Mei, L., Xie, Z.J., and Dong, Z. (2007). Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc. Natl. Acad. Sci. U. S. A. 104, 11649-11654. https://doi.org/10.1073/pnas.0703976104
  5. Calo, L., Dong, Y., Kumar, R., Przyklenk, K., and Sanderson, T.H. (2013). Mitochondrial dynamics: an emerging paradigm in ischemia-reperfusion injury. Curr. Pharm. Des. 19, 6848-6857. https://doi.org/10.2174/138161281939131127110701
  6. Cho, S.G., Du, Q., Huang, S., and Dong, Z. (2010). Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. Am. J. Physiol. Renal. Physiol. 299, F199-F206. https://doi.org/10.1152/ajprenal.00716.2009
  7. Cribbs, J.T. and Strack, S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939-944. https://doi.org/10.1038/sj.embor.7401062
  8. Dietz, J.V., Bohovych, I., Viana, M.P., and Khalimonchuk, O. (2019). Proteolytic regulation of mitochondrial dynamics. Mitochondrion 49, 289-304. https://doi.org/10.1016/j.mito.2019.04.008
  9. Emma, F., Montini, G., Parikh, S.M., and Salviati, L. (2016). Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat. Rev. Nephrol. 12, 267-280. https://doi.org/10.1038/nrneph.2015.214
  10. Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G.V., Rudka, T., Bartoli, D., Polishuck, R.S., Danial, N.N., De Strooper, B., et al. (2006). OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177-189. https://doi.org/10.1016/j.cell.2006.06.025
  11. Funk, J.A. and Schnellmann, R.G. (2012). Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F853-F864. https://doi.org/10.1152/ajprenal.00035.2011
  12. Galvan, D.L., Long, J., Green, N., Chang, B.H., Lin, J.S., Schumacker, P.T., Truong, L.D., Overbeek, P., and Danesh, F.R. (2019). Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice. J. Clin. Invest. 129, 2807-2823. https://doi.org/10.1172/JCI127277
  13. Gandhi, C.R. (2012). Augmenter of liver regeneration. Fibrogenesis TissueRepair 5, 10. https://doi.org/10.1186/1755-1536-5-10
  14. Huang, L.L., Long, R.T., Jiang, G.P., Jiang, X., Sun, H., Guo, H., and Liao, X.H. (2018). Augmenter of liver regeneration promotes mitochondrial biogenesis in renal ischemia-reperfusion injury. Apoptosis 23, 695-706. https://doi.org/10.1007/s10495-018-1487-2
  15. Ishihara, N., Otera, H., Oka, T., and Mihara, K. (2013). Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. Antioxid. Redox Signal. 19, 389-399. https://doi.org/10.1089/ars.2012.4830
  16. Ishimoto, Y. and Inagi, R. (2016). Mitochondria: a therapeutic target in acute kidney injury. Nephrol. Dial. Transplant. 31, 1062-1069. https://doi.org/10.1093/ndt/gfv317
  17. Jiang, X., Liao, X.H., Huang, L.L., Sun, H., Liu, Q., and Zhang, L. (2019). Overexpression of augmenter of liver regeneration (ALR) mitigates the effect of $H_{2}O_{2}$-induced endoplasmic reticulum stress in renal tubule epithelial cells. Apoptosis 24, 278-289. https://doi.org/10.1007/s10495-019-01517-z
  18. Kaddourah, A., Basu, R.K., Bagshaw, S.M., Goldstein, S.L.; AWARE Investigators. (2017). Epidemiology of acute kidney injury in critically ill children and young adults. N. Engl. J. Med. 376, 11-20. https://doi.org/10.1056/NEJMoa1611391
  19. Kamerkar, S.C., Kraus, F., Sharpe, A.J., Pucadyil, T.J., and Ryan, M.T. (2018). Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9, 5239. https://doi.org/10.1038/s41467-018-07543-w
  20. Laplante, M. and Sabatini, D.M. (2012). mTOR signaling in growth control and disease. Cell 149, 274-293. https://doi.org/10.1016/j.cell.2012.03.017
  21. Leung, K.C., Tonelli, M., and James, M.T. (2013). Chronic kidney disease following acute kidney injury-risk and outcomes. Nat. Rev. Nephrol. 9, 77-85. https://doi.org/10.1038/nrneph.2012.280
  22. Liao, X.H., Chen, G.T., Li, Y., Zhang, L., Liu, Q., Sun, H., and Guo, H. (2012). Augmenter of liver regeneration attenuates tubular cell apoptosis in acute kidney injury in rats: the possible mechanisms. Ren. Fail. 34, 590-599. https://doi.org/10.3109/0886022X.2012.664470
  23. Liao, X.H., Zhang, L., Chen, G.T., Yan, R.Y., Sun, H., Guo, H., and Liu, Q. (2014). Augmenter of liver regeneration inhibits TGF-${\beta}1$-induced renal tubular epithelial-to-mesenchymal transition via suppressing $T{\beta}R$ II expression in vitro. Exp. Cell Res. 327, 287-296. https://doi.org/10.1016/j.yexcr.2014.07.001
  24. MacVicar, T. and Langer, T. (2016). OPA1 processing in cell death and disease - the long and short of it. J. Cell Sci. 129, 2297-2306. https://doi.org/10.1242/jcs.159186
  25. Mears, J.A., Lackner, L.L., Fang, S., Ingerman, E., Nunnari, J., and Hinshaw, J.E. (2011). Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20-26. https://doi.org/10.1038/nsmb.1949
  26. Mehta, R.L., Cerda, J., Burdmann, E.A., Tonelli, M., Garcia-Garcia, G., Jha, V., Susantitaphong, P., Rocco, M., Vanholder, R., Sever, M.S., et al. (2015). International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385, 2616-2643. https://doi.org/10.1016/S0140-6736(15)60126-X
  27. Mordas, A. and Tokatlidis, K. (2015). The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Acc. Chem. Res. 48, 2191-2199. https://doi.org/10.1021/acs.accounts.5b00150
  28. Morita, M., Prudent, J., Basu, K., Goyon, V., Katsumura, S., Hulea, L., Pearl, D., Siddiqui, N., Strack, S., McGuirk, S., et al. (2017). mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol. Cell 67, 922-935.e5. https://doi.org/10.1016/j.molcel.2017.08.013
  29. Perry, H.M., Huang, L., Wilson, R.J., Bajwa, A., Sesaki, H., Yan, Z., Rosin, D.L., Kashatus, D.F., and Okusa, M.D. (2018). Dynamin-related protein 1 deficiency promotes recovery from AKI. J. Am. Soc. Nephrol. 29, 194-206. https://doi.org/10.1681/asn.2017060659
  30. Robert, F. and Pelletier, J. (2009). Translation initiation: a critical signalling node in cancer. Expert Opin. Ther. Targets 13, 1279-1293. https://doi.org/10.1517/14728220903241625
  31. Saxton, R.A. and Sabatini, D.M. (2017). mTOR signaling in growth, metabolism, and disease. Cell 169, 361-371. https://doi.org/10.1016/j.cell.2017.03.035
  32. Smirnova, E., Griparic, L., Shurland, D.L., and van der Bliek, A.M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245-2256. https://doi.org/10.1091/mbc.12.8.2245
  33. Suen, D.F., Norris, K.L., and Youle, R.J. (2008). Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577-1590. https://doi.org/10.1101/gad.1658508
  34. Sumida, M., Doi, K., Ogasawara, E., Yamashita, T., Hamasaki, Y., Kariya, T., Takimoto, E., Yahagi, N., Nangaku, M., and Noiri, E. (2015). Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J. Am. Soc. Nephrol. 26, 2378-2387. https://doi.org/10.1681/asn.2014080750
  35. Szeto, H.H. (2017). Pharmacologic approaches to improve mitochondrial function in AKI and CKD. J. Am. Soc. Nephrol. 28, 2856-2865. https://doi.org/10.1681/ASN.2017030247
  36. Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521-11529. https://doi.org/10.1074/jbc.M607279200
  37. Tondera, D., Czauderna, F., Paulick, K., Schwarzer, R., Kaufmann, J., and Santel, A. (2005). The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J. Cell Sci. 118, 3049-3059. https://doi.org/10.1242/jcs.02415
  38. Tondera, D., Santel, A., Schwarzer, R., Dames, S., Giese, K., Klippel, A., and Kaufmann, J. (2004). Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J. Biol. Chem. 279, 31544-31555. https://doi.org/10.1074/jbc.M404704200
  39. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258-261. https://doi.org/10.1093/nar/gkg034
  40. Yan, R., Li, Y., Zhang, L., Xia, N., Liu, Q., Sun, H., and Guo, H. (2015). Augmenter of liver regeneration attenuates inflammation of renal ischemia/reperfusion injury through the NF-kappa B pathway in rats. Int. Urol. Nephrol. 47, 861-868. https://doi.org/10.1007/s11255-015-0954-8
  41. Youle, R.J. and Karbowski, M. (2005). Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol. 6, 657-663. https://doi.org/10.1038/nrm1697
  42. Zhan, M., Brooks, C., Liu, F., Sun, L., and Dong, Z. (2013). Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 83, 568-581. https://doi.org/10.1038/ki.2012.441
  43. Zoncu, R., Efeyan, A., and Sabatini, D.M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21-35. https://doi.org/10.1038/nrm3025

Cited by

  1. Therapeutic potential of targeting mitochondrial dynamics in cancer vol.182, 2019, https://doi.org/10.1016/j.bcp.2020.114282
  2. Mitochondrial Dysfunction in Cardiorenal Syndrome 3: Renocardiac Effect of Vitamin C vol.10, pp.11, 2019, https://doi.org/10.3390/cells10113029