2011년 심장질환으로 사망하는 인구수가 약 25,000명에 이른다. 본 논문은 심장마비환자의 빠른 응급구제를 위해 심장마비의 발생을 감지하고 응급상황을 전파하는 시스템을 개발한다. 심장마비를 감지하기 위해 맥박센서가 부착된 wearable computer를 제작한다. 측정된 맥박은 블루투스 무선통신으로 스마트폰으로 전송된다. 스마트폰에서 입력받은 맥박을 분석하여 상황판단을 하고 비상알람, SNS(Social Network Service), SMS(Short Message Service)를 활용하여 상황전파를 한다.
본 논문은 일회용 암호(OTP: One Time Password)와 같은 비밀번호의 입력 시 발생할 수 있는 비밀번호 훔쳐보기(Shoulder-Surfing)를 대비하고 비밀번호의 보안성을 높이기 위해 영상을 비밀번호로 대체하는 인식시스템을 개발하였다. 영의 인식율울 개선하기 위하여 영상처리 기술 중 하나인 모폴로지 기법을 사용하였다. 이미지의 인식율을 높이고 잡음을 제거하기 위하여 모폴로지 연산인 침식과 팽창 연산을 4회 실시하여 2진 영상의 잡음을 제거하였다. 도트매트릭스에 나타난 영상에서부터 비밀번호를 인식하는 앱을 개발하고 인식률을 측정하였다. 어두운 조명 환경(1 Lux이하)에서 2진 영상 비밀번호 인식율이 최소 90% 달성됨을 확인하였다.
본 연구는 우리나라의 각종 소.중형 및 대형 산불의 공중진화 경험을 바탕으로 산불행태와 헬기의 현장운영을 고려한 산불 공중진화 방화선 구축형태 및 진화방법에 대하여 제안하였다. 산불확산은 현장의 지세, 경사, 바람, 수종 등에 영향을 받으므로 공중진화 방화선을 구축할 때에는 연소방향 및 형태, 강도 등을 분석한 후 진화작업을 실시하여야 하며, 특히 연기로 인하여 시계가 방해 받으므로 안전을 고려해 진화작업을 하는 것이 중요하다. 따라서 본 연구에서는 산불현장 공중진화 경험을 바탕으로 A형에서 M형까지 13개의 산불 공중진화 방화선 구축형태 및 진화방법을 제안하였다.
Rathore, Shailendra;Sharma, Pradip Kumar;Park, Jong Hyuk
Journal of Information Processing Systems
/
제13권4호
/
pp.1014-1028
/
2017
Social networking services (SNSs) such as Twitter, MySpace, and Facebook have become progressively significant with its billions of users. Still, alongside this increase is an increase in security threats such as cross-site scripting (XSS) threat. Recently, a few approaches have been proposed to detect an XSS attack on SNSs. Due to the certain recent features of SNSs webpages such as JavaScript and AJAX, however, the existing approaches are not efficient in combating XSS attack on SNSs. In this paper, we propose a machine learning-based approach to detecting XSS attack on SNSs. In our approach, the detection of XSS attack is performed based on three features: URLs, webpage, and SNSs. A dataset is prepared by collecting 1,000 SNSs webpages and extracting the features from these webpages. Ten different machine learning classifiers are used on a prepared dataset to classify webpages into two categories: XSS or non-XSS. To validate the efficiency of the proposed approach, we evaluated and compared it with other existing approaches. The evaluation results show that our approach attains better performance in the SNS environment, recording the highest accuracy of 0.972 and lowest false positive rate of 0.87.
딥러닝 기술이 여러 분야에 적용되면서 딥러닝 모델의 보안 문제인 적대적 공격기법 연구가 활발히 진행되었다. 적대적 공격은 이미지 분야에서 주로 연구가 되었는데 최근에는 모델의 분류 결과만 있으면 공격이 가능한 의사 결정 공격기법까지 발전했다. 그러나 오디오 분야의 경우 적대적 공격을 적용하는 연구가 비교적 더디게 이루어지고 있는데 본 논문에서는 오디오 분야에 최신 의사 결정 공격기법을 적용하고 개선한다. 최신 의사 결정 공격기법은 기울기 근사를 위해 많은 질의 수가 필요로 하는 단점이 있는데 본 논문에서는 기울기 근사에 필요한 벡터 탐색 공간을 축소하여 질의 효율성을 높인다. 실험 결과 최신 의사 결정 공격기법보다 공격 성공률을 50% 높였고, 원본 오디오와 적대적 예제의 차이를 75% 줄여 같은 질의 수 대비 더욱 작은 노이즈로 적대적 예제가 생성 가능함을 입증하였다.
When people stands near someone's mobile device, it can easily be seen by others. To rephrase this, attackers use human psychology to earn personal information or credit information or other. People are exposed by social engineering attacks. It is certain that we need more than just recommendation for the security to avoid social engineering attacks. This is why I proposed this paper. In this paper, I proposed an authentication technique using NFC and Hash function to stand against social engineering attack. Proposed technique result is showing that it could prevent shoulder surfing, touch event information, spyware attack using screen capture and smudge attack which relies on detecting the oily smudges left behind by user's fingers. Besides smart phone, IPad, Galaxy tab, Galaxy note and more mobile devices has released and releasing. And also, these mobile devices usage rate is increasing widely. We need to attend these matters and study in depth.
International Journal of Computer Science & Network Security
/
제21권7호
/
pp.56-62
/
2021
The surge in generic attacks execution against cipher text on the computer network has led to the continuous advancement of the mechanisms to protect information integrity and confidentiality. The implementation of explicit decision tree machine learning algorithm is reported to accurately classifier generic attacks better than some multi-classification algorithms as the multi-classification method suffers from detection oversight. However, there is a need to improve the accuracy and reduce the false alarm rate. Therefore, this study aims to improve generic attack classification by implementing two hybridized decision tree algorithms namely Naïve Bayes Decision tree (NBTree) and Logistic Model tree (LMT). The proposed hybridized methods were developed using the 10-fold cross-validation technique to avoid overfitting. The generic attack detector produced a 99.8% accuracy, an FPR score of 0.002 and an MCC score of 0.995. The performances of the proposed methods were better than the existing decision tree method. Similarly, the proposed method outperformed multi-classification methods for detecting generic attacks. Hence, it is recommended to implement hybridized decision tree method for detecting generic attacks on a computer network.
인터넷의 급속한 확장으로 인해 네트워크 공격기법의 패러다임의 변화가 시작되었으며 새로울 공격 형태가 나타나고 있으나 대부분의 침입 탐지 기술은 오용 탐지 기술을 기반으로 하는 시스템이주를 이루고 있어 알려진 공격 유형만을 탐지하고, 새로운 공격에 능동적인 대응이 어려운 실정이다. 이에 새로운 공격 유형에 대한 탐지력을 높이기 위해 인체 면역 메커니즘을 적용하려는 시도들이 나타나고 있다. 본 논문에서는 데이터 마이닝 기법을 이용하여 네트워크 패킷에 대한 정상 행위 프로파일을 생성하고 생성된 프로파일을 자기공간화 하여 인체면역계의 자기, 비자기 구분기능을 이용해 자기 인식 알고리즘을 구현하여 이상행위를 탐지하고자 한다. 자기인식 알고리즘의 하나인 Negative Selection Algorithm을 기반으로 anomaly detector를 생성하여 자기공간을 모니터하여 변화를 감지하고 이상행위를 검출한다. DARPA Network Dataset을 이용하여 시뮬레이션을 수행하여 침입 탐지율을 통해 알고리즘의 유효성을 검증한다.
Hydraultic experiments were performed in 2-D were flume to investigate the stability o the breakwaters, the destruction of armor blocks and overtopping under irregular wave attack on the structures armored by \`Core-Loc\`. Overtopping rate and stability were examined and compared when armored by Core-Loc and by T.T.P. Results shows both type of blocks are stable and overtopping rates are similar in the adopted experimental condition. Therefore Core-Loc can replace some portion of T.T.P. which is uniquely used in Korea. Further integrated experimental data with Core-loc are need for destruction mechanism or overtopping rate.
Objectives: Previous study has shown that the positive rate of latent tuberculosis infection(LTBI) among former workers in dusty environments was higher than that among high-risk groups of tuberculosis(TB). The objective of the present study was to identify the development of active TB among former workers in dusty environments diagnosed with LTBI. Methods: Between January 2015 and May 2017, 796 former workers in dusty environments who had been subjects of epidemiology research for work-related chronic obstructive pulmonary disease(COPD) had received the QuantiFERON-TB® Gold In-Tube(QFT-GIT) from the Institute of Occupation and Environment(IOE) under the Korea Workers' Compensation and Welfare Service(KCOMWEL). Among them, 437 participants who received a health examination for work-related pneumoconiosis between January 2015 and December 2018 were selected as study subjects. Active TB was defined as a positive result for active PTB and non-tuberculosis mycobacteria infection in the result of the Pneumoconiosis Examination Council's assessment by KCOMWEL. Results: A total of 437 subjects were followed up for 2.1 years. Four of them(4/437, 0.9%) developed active TB during the follow-up period. The attack rate of active TB among subjects who were diagnosed LTBI positive and those who were diagnosed LTBI negative were 0.9%(3/320) and 0.9%(1/115), respectively. Conclusions: Most previous studies reported that the attack rate of the development of active TB in subjects who had been diagnosed LTBI positive was higher than that among subjects who had been diagnosed LTBI negative. To the contrary, the present study found that the rate of developing active TB among former workers in dusty environments diagnosed as LTBI positive was not higher than that in those who were diagnosed LTBI negative.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.