• 제목/요약/키워드: attachment substrate

검색결과 69건 처리시간 0.019초

실내 배양시 부착기질 크기에 따른 저서성 미세조류 Nitzschia sp.의 성장 특성 (Effect of Attachment Substrate Size on the Growth of a Benthic Microalgae Nitzschia sp. in Culture Condition)

  • 오석진;윤양호;산본민차;양한섭
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제12권2호
    • /
    • pp.91-95
    • /
    • 2009
  • 저서성 미세조류의 성장에 미치는 부착기질의 영향을 알기 위해 서로 다른 크기의 glass bead를 첨가하여 저서성 미세조류 Nitzschia sp.(진해만 클론)의 성장을 조사하였다. 연구에 사용된 glass bead의 크기는 0.09-0.15 mm(G1), 0.25-0.50 mm(G2), 0.75-1.00 mm(G3) 그리고 1.25-1.65 mm(G4)이며, glass bead를 첨가하지 않는 대조구도 설정하였다. Nitzschia sp.의 가장 높은 성장속도(0.37/day)와 최대세포밀도($9,232{\pm}840$ cells/mL)는 가장 작은 크기의 glass bead를 첨가한 G1에서 나타났다. 그리고 성징속도와 최대세포밀도는 glass bead 크기의 증가와 함께 감소하였다(G4의 성장속도와 최대세포밀도는 각각 0.24/day와 $6,397{\pm}524$ cells/mL였다). 더욱이 대조구의 성장속도는 실험구 G1에서 G3의 성장속도보다 상당히 낮았다. 이 결과에서 Nitzschia sp.와 같은 저서성 미세조류를 위한 부착기질은 성장속도 뿐만 아니라 세포밀도에도 큰 영향을 주는 것으로 나타났다. 따라서 부착미세조류의 생리실험을 위해서는 예비실험으로 부착기질의 유무 및 대상 종에 적합한 부착입자의 크기의 고려가 필요할 것으로 보인다.

  • PDF

고분자 물질 도포가 미생물 부착과 생물막 성장에 미치는 영향 (Effect of Polymer Coating on the Initial Microorganism Attachment and the Biofilm Growth)

  • 박영식;송승구
    • 한국환경보건학회지
    • /
    • 제24권2호
    • /
    • pp.104-109
    • /
    • 1998
  • The objective of this study was to examine the effect of polymer coating on the initial microorganism attachment and the biofilm growth. Such as nonion(polyacrylamine), anion(CMC-Na) and cation polymer coagulant(chitosan and PEI) were used for coating material of the support carrier(acryl plate). When polymer coagulant was coated with 5, 10, 20, 35, 50, 100 and 200 mg/l on the surface of acryl plate, initial microorganism attachment increased and optimum concentration for the attachment was 35 mg/l. Biofilm growth experiments were conducted with the substrate loading of 12.7gSCOD/$m^2\cdot$ day using RBC. The polymer coagulants such as CMC-Na, polyacrylamide, PEI and chitosan coating on the acryl plate facilitated the biofilm growth of microorganisms. Until the biofilm dry weight grows up to 0. 0038g/cm$^2$, biofilm growth on the plate coated with cation polymer like chitosan was better than that on the coated plate of nonion(polyacrylamine), anion(CMC-Na) polymer coagulant.

  • PDF

Microstructure of the biological attachment devices in the ladybug Harmonia axyridis (Coleoptera: Coccinellidae)

  • Moon, Myung-Jin;Kim, Hyo-Jeong;Kim, Hoon;Park, Jong-Gu
    • Animal cells and systems
    • /
    • 제16권6호
    • /
    • pp.479-487
    • /
    • 2012
  • Biological attachment device is optimized in insect legs for attachment onto the variety of natural substrate. We have studied the microstructural characteristics of the tarsal appendages in the ladybug Harmonia axyridis using scanning electron microscopy to reveal the attachment system of their legs. The attachment devices are composed of claws and adhesive pads. The claws are connected with pretarsal segment, and their apical diverged hooks are developed to hold rough substrates. In contrast, the adhesive pads have an adhesive function onto smooth surface. The pads are interspersed at the ventral part of each tarsomere, and are composed of two kinds of hairy setae. The discoid tip seta (DtS) has a spoon-shaped endplate usually with a rounded concave structure, whereas the pointed tip seta (PtS) has a pointed tip, usually with a hooked endplate. While the PtS is broadly localized concentrically on the marginal area of both the proximal and distal pads, the DtS can be seen at the central areas of each adhesive pad except for the hind legs. Our findings demonstrate the presence of the direction-dependence pattern of the fibrillar system as well as a functional modification of the tenent setae to achieve proper contact with almost any kind of substrates.

저서미세조류 4종(Achnanthes sp., Amphora sp., Navicula sp. 그리고 Nitzschia sp.)의 성장에 영향을 미치는 부착기질 크기의 영향 (Effects of Substrate Size on the Growth of 4 Microphytobenthos Species (Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp.))

  • 권형규;양한섭;유영문;오석진
    • 한국환경과학회지
    • /
    • 제21권1호
    • /
    • pp.105-111
    • /
    • 2012
  • The effects of substrate size on the growth of microphytobenthos Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp. were examined using glass beads in order for phytoremediation in the benthic layer of coastal waters. The glass beads used in this study were 0.09~0.15 mm (G.B 1), 0.25~0.50 mm (G.B 2), 0.75~1.00 mm (G.B 3) and 1.25~1.65 mm (G.B 4). No addition of glass bead used as control. The specific growth rate and maximum cell density of four microphytobenthos species were increasing with decreasing size of glass beads. Moreover, the control experiment without added attachment substrates showed the lowest specific growth rate and maximum cell density. Therefore, the suitable attachment substrates for mass culture of microphytobenthos seems to be important in order for phytoremediation using microphytobenthos.

Wet adhesion and rubber friction in adhesive pads of insects

  • Federle, Walter
    • 접착 및 계면
    • /
    • 제5권2호
    • /
    • pp.31-42
    • /
    • 2004
  • Many animals possess on their legs adhesive pads, which have undergone evolutionary optimization to be able to attach to variable substrates and to control adhesive forces during locomotion. Insect adhesive pads are either relatively smooth or densely covered with specialized adhesive hairs. Theoretical models predict that adhesion can be increased by splitting the contact zone into many microscopic, elastic subunits, which provides a functional explanation for the widespread 'hairy' design. In many hairy and all smooth attachment systems, the adhesive contact is mediated by a thin film of liquid secretion between the cuticle and the substrate. By using interference reflection microscopy (IRM), the thickness and viscosity of the secretion film was estimated in Weaver ants (Oecophylla smaragdina). 'Footprint' droplets deposited on glass are hydrophobic and form low contact angles. IRM of insect pads in contact showed that the adhesive liquid is an emulsion consisting of hydrophilic, volatile droplets dispersed in a persistent, hydrophobic phase. I tested predictions derived from film thickness and viscosity by measuring friction forces of Weaver ants on a smooth substrate. The measured friction forces were much greater than expected assuming a homogenous film between the pad and the surface. The findings indicate that the rubbery pad cuticle directly interacts with the substrate. To achieve intimate contact between the cuticle and the surface, secretion must drain away, which may be facilitated by microfolds on the surface of smooth insect pads. I propose a combined wet adhesion/rubber friction model of insect surface attachment that explains both the presence of a significant static friction component and the velocity-dependence of sliding friction.

  • PDF

합성 기질에 의해 형성된 Lambda Site-specific Recombination 중간 대사물의 분석 (Analysis of Lambda Site-specific Recombination Inermediates Generated by Synthetic Substrates)

  • 이나영;유승구
    • 한국미생물·생명공학회지
    • /
    • 제23권3호
    • /
    • pp.282-287
    • /
    • 1995
  • Integrase (Int) carries out the cutting and resealing of attachment (att) site DNA via a covalent Int-DNA intermediate. A family of synthetic substrate DNAs was designed to accumulate Int-DNA intermediate. Int-DNA intermediates accumulated by half substrate was analyzed by SDS- KCI precipitation and restriction digestion. The results showed that Int-half DNA intermediate was circular and contained covalently bound Int molecule. Int-DNA intermediates were also trapped with three other kinds of synthetic substrates.

  • PDF

펩티드성분을 함유하는 블록공중합체막의 세포접착성 (Attachment of Fibroblast Cells on the Block Copdymer Membrane containing Peptide Segments)

  • 강인규;강신성;임학상
    • 대한의용생체공학회:의공학회지
    • /
    • 제13권2호
    • /
    • pp.155-164
    • /
    • 1992
  • Attachment and growth of mouse flbroblast cells on block copolypeptides were studied in the pres once or absence of serum proteins. Cells are rapidly attached to she polymer surface within 30 min regardless of substrate in the presence of serum. The number of flbroblast cells attached on the poly mer surface coated by collagen was larger than thats on the bare surface. Attachment of cells Is as a whole suppressed to a low level by the addltion of sodium azide in the absence of serum. Thls suE gests that the active attachment of cells requires the biological metabolism taking place on polymer substrates. In the presence of serum protein, flbroblast cells are more rapidly grown on the bolck co polymer consisting of poly(T-benzyl L-glutamate) (PBLG) and polyoxypropylene(POP) than on other block copolymers. These results were in agreement wish the data obatlned by an Inverted ml croscope.

  • PDF

Artificial Metalloproteases with Broad Substrate Selectivity Constructed on Polystyrene

  • Ko, Eun-Hwa;Suh, Jung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권12호
    • /
    • pp.1917-1923
    • /
    • 2004
  • Although the proteolytic activity of the Cu(II) complex of cyclen (Cyc) is greatly enhanced upon attachment to a cross-linked polystyrene (PS), the Cu(II)Cyc-containing PS derivatives reported previously hydrolyzed only a very limited number of proteins. The PS-based artificial metalloproteases can overcome thermal, mechanical, and chemical instabilities of natural proteases, but the narrow substrate selectivity of the artificial metalloproteases limits their industrial application. In the present study, artificial metalloproteases exhibiting broad substrate selectivity were synthesized by attaching Cu(II)Cyc to a PS derivative using linkers with various structures in an attempt to facilitate the interaction of various protein substrates with the PS surface. The new artificial metalloproteases hydrolyzed all of the four protein substrates (albumin, myoglobin, ${\gamma}$-globulin, and lysozyme) examined, manifesting $k_{cat}/K_m$ values of 28-1500 $h_{-1}M_{-1}$ at 50 $^{\circ}C$. The improvement in substrate selectivity is attributed to steric and/or polar interaction between the bound protein and the PS surface as well as the hydrophobicity of the microenvironment of the catalytic centers.

Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment

  • Sung, Ha Guyn;Kobayashi, Yasuo;Chang, Jongsoo;Ha, Ahnul;Hwang, Il Hwan;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권2호
    • /
    • pp.200-207
    • /
    • 2007
  • In vitro rumen incubation studies were conducted to determine effects of initial pH on bacterial attachment and fiber digestion. Ruminal fluid pH was adjusted to 5.7, 6.2 and 6.7, and three major fibrolytic bacteria attached to rice straw in the mixed culture were quantified with real-time PCR. The numbers of attached and unattached Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminocococcus albus were lower (p<0.05) at initial pH of 5.7 without significant difference between those at higher initial pH. Lowering incubation media pH to 5.7 also increased bacterial numbers detached from substrate regardless of bacterial species. Dry matter digestibility, gas accumulation and total VFA production were pH-dependent. Unlike bacterial attachment, maintaining an initial pH of 6.7 increased digestion over initial pH of 6.2. After 48 h in vitro rumen fermentation, average increases in DM digestion, gas accumulation, and total VFA production at initial pH of 6.2 and 6.7 were 2.8 and 4.4, 2.0 and 3.0, and 1.2 and 1.6 times those at initial pH of 5.7, respectively. The lag time to reach above 2% DM digestibility at low initial pH was taken more times (8 h) than at high and middle initial pH (4 h). Current data clearly indicate that ruminal pH is one of the important determinants of fiber digestion, which is modulated via the effect on bacterial attachment to fiber substrates.

PoP용 Substrate의 Warpage 감소를 위해 유한요소법을 이용한 설계 파라메타 연구 (Study on Design Parameters of Substrate for PoP to Reduce Warpage Using Finite Element Method)

  • 조승현;이상수
    • 마이크로전자및패키징학회지
    • /
    • 제27권3호
    • /
    • pp.61-67
    • /
    • 2020
  • 본 논문에서는 FEM(유한요소) 기법을 사용하여 칩이 실장되는 않은 substrate와 칩이 실장된 substrate의 warpage를 해석하여 칩의 실장이 warpage에 미치는 영향을 비교·분석하였다. 또한, warpage를 감소시키기 위한 substrate의 층별 두께의 영향도 분석과 층별 두께 조건을 다구찌법에 의한 신호 대 잡음 비로 분석하였다. 해석 결과에 의하면 칩이 실장되면 substrate의 warpage는 패턴의 방향이 변할 수 있고, 칩이 실장되면서 패키지의 강성도(stiffness)가 증가하고, 패키지 상·하의 열팽창계수의 차이가 작아지면서 warpage는 감소하였다. 또한, 칩이 실장되지 않은 substrate를 대상으로 설계 파라메타의 영향도 분석 결과에 의하면 warpage를 감소시키기 위해서는 회로층 중에서 내층인 Cu1과 Cu4를 중점 관리하고, 다음으로 바닥면의 solder resist 층의 두께와 Cu1과 Cu2 사이의 프리프레그 층의 두께를 관리해야 한다.