DOI QR코드

DOI QR Code

Effects of Substrate Size on the Growth of 4 Microphytobenthos Species (Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp.)

저서미세조류 4종(Achnanthes sp., Amphora sp., Navicula sp. 그리고 Nitzschia sp.)의 성장에 영향을 미치는 부착기질 크기의 영향

  • Received : 2011.08.01
  • Accepted : 2011.12.09
  • Published : 2012.01.31

Abstract

The effects of substrate size on the growth of microphytobenthos Achnanthes sp., Amphora sp., Navicula sp. and Nitzschia sp. were examined using glass beads in order for phytoremediation in the benthic layer of coastal waters. The glass beads used in this study were 0.09~0.15 mm (G.B 1), 0.25~0.50 mm (G.B 2), 0.75~1.00 mm (G.B 3) and 1.25~1.65 mm (G.B 4). No addition of glass bead used as control. The specific growth rate and maximum cell density of four microphytobenthos species were increasing with decreasing size of glass beads. Moreover, the control experiment without added attachment substrates showed the lowest specific growth rate and maximum cell density. Therefore, the suitable attachment substrates for mass culture of microphytobenthos seems to be important in order for phytoremediation using microphytobenthos.

Keywords

References

  1. 오상희, 고철환, 1991, 서해 만경-동진 조간대의 주요 우점 저서 규조류의 분포, 한국해양학회지, 26(2), 24-37.
  2. 오석진, 박달수, 양한섭, 윤양호, Honjo, T., 2007, 발광다이오드(LED)를 이용한 저서미세조류의 성장촉진에 의한 오염해역 저질환경개선, 한국해양환경공학회지, 10(2), 93-101.
  3. 오석진, 윤양호, Yamamoto, T., 양한섭, 2009, 실내 배양시 부착기질 크기에 따른 저서성 미세조류 Nitzschiasp.의 성장 특성, 한국해양환경공학회지, 12(2), 91-95.
  4. 이학영, 2003, 가마미 해수욕장(전남영광) 갯벌의 미세 조류의 분포에 관한 연구, 한국환경과학회지, 12(7), 715-724.
  5. 해양수산부, 2000, 갯벌 생태계조사 및 지속 가능한 이용 방안 연구.
  6. Admiraal, W., 1984, The ecology of estuarine sedimentinhabiting diatoms, Prog. Phycol. Res., 5, 269-322.
  7. Brand, L. E., Guillard, R. R. L., Murphy, L. S., 1981, A method for the rapid and precise determination of acclimated phytoplankton reproduction rates, J. Plankton Res., 3, 193-201. https://doi.org/10.1093/plankt/3.2.193
  8. Cahoon, L. B., Nearhoof, J. E., Tilton, C. L., 1999, Sediment grain size effect on benthic microalgal biomass in shallow aquatic ecosystems, Estuaries, 22, 735-741. https://doi.org/10.2307/1353106
  9. Cahoon, L. B., Safi, K. A., 2002, Distribution and biomass of benthic microalgae in Manukau Harbour, New Zealand, New Zealand J. Mar. Freshwater Res., 36, 257-266. https://doi.org/10.1080/00288330.2002.9517084
  10. Cartaxana, P., Mendes, C. R., van Leeuwe, M. A., Brotas, V., 2006, Comparative study on microphytobenthic pigments of muddy and sandy intertidal sediments of the Tagus estuary, Estuar. Coast. Shelf Sci., 66, 225-230. https://doi.org/10.1016/j.ecss.2005.08.011
  11. Colijn, F., 1982, Light absorption in the waters of the Ems-Dollard Estuary and its consequences for the growth of phytoplankton and microphytobenthos, Neth. J. Sea Res., 15, 196-216. https://doi.org/10.1016/0077-7579(82)90004-7
  12. Daniel, G. F., Chamberlain, A. H. L., Jones, E. B. G., 1987, Cytochemical and electron microscopical observations on the adhesive materials of marine fouling diatoms, Br. Phycol. J., 22, 101-118. https://doi.org/10.1080/00071618700650131
  13. Davis, M. W., McIntire, C. D., 1983, Effects of physical gradients on the production dynamics of sedimentassociated algae, Mar. Ecol. Prog. Ser., 13, 103-114. https://doi.org/10.3354/meps013103
  14. De Jonge, V. N., van Beuselom, J. E. E., 1992, Contribution of resuspended microphytobenthos to total phytoplankton in the Ems estuary and its possible role for grazer, Neth. J. Sea. Res., 30, 91-105. https://doi.org/10.1016/0077-7579(92)90049-K
  15. Doblin, M. A., Blackburn, S. I., Hallegraeff, G. M., 1999, Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by organic substances, J. Exp. Mar. Biol. Ecol., 236, 33-47. https://doi.org/10.1016/S0022-0981(98)00193-2
  16. Edgar, L. A., Pickett-Heaps, J. D., 1984, Diatom locomotion, Prog. Phycol. Res., 3, 47-88.
  17. Fukami, K., Murata, N., Morio, Y., Nishijima, T., 2002, Improvement of eutrophic coastal bottom environments by using an optical fiber and effective psychrophilic bacteria, Fish. Sci., 68, 617-620. https://doi.org/10.2331/fishsci.68.sup1_617
  18. Hoagland, K. D., Rosowski, J. R., Gretz, M. R., Roemer, S. C., 1993, Diatom extracellular polymeric substances: Function, fine structure, chemistry and physiology, J. Phycol., 29, 537-566. https://doi.org/10.1111/j.0022-3646.1993.00537.x
  19. Hustedt, F., 1985, The pennate diatoms, Koeltz Sci. Books, Koenigstein, 918.
  20. Kawamura, T., 2004, Ecology of benthic diatom, Nippon Suisan Gakkaishi, 70, 788-798. https://doi.org/10.2331/suisan.70.788
  21. Lee, J. B., Choa, J. H., Koh, H. B., 1999, Community structure and ecological characteristics of attached diatom in the coastal waters of Cheju Island, Korea, Algae, 13, 55-66.
  22. MacIntyre, H. L., Cullen, J. J., 1995, Fine-scale vertical resolution of chlorophyll and photosynthetic parameters in shallow-water benthos, Mar. Ecol. Prog. Ser., 122, 227-237. https://doi.org/10.3354/meps122227
  23. Meadows, P. S., Anderson, J. G., 1968, Microorganisms attached to marine sand grains, J. Mar. Biol. Ass. U.K., 48, 161-175. https://doi.org/10.1017/S0025315400032501
  24. Meleder, V., Barille, L., Rince, Y., Morancais, M., Rosa, P., Gaudin, P., 2005, Spatio-temporal changes in microphytobenthos structure analysed by pigment composition in a macrotidal flat (Bourgneuf Bay, France), Mar. Ecol. Prog. Ser., 297, 83-99. https://doi.org/10.3354/meps297083
  25. Montani, S., Magni, P., Abe, N., 2003, Seasonal and interannual patterns of intertidal microphytobenthos in combination with laboratory and areal production estimates, Mar. Ecol. Prog. Ser., 249, 79-91. https://doi.org/10.3354/meps249079
  26. Paterson, D. M., 1989, Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms, Limnol. Oceanogr., 34, 223-234. https://doi.org/10.4319/lo.1989.34.1.0223
  27. Patrick, R., Reimer, C. W., 1966, The diatoms of the United States, Acad. Nat. Sci., Philadelphia, 688.
  28. Perkins, R. G., Honeywill, C., Consalvey, M., Austin, H. A., Tolhurst, T. J., Paterson, D. M., 2003, Changes in microphytobenthic chlorophyll a and EPS resulting from sediment compaction due to de-watering: opposing patterns in concentration and content, Cont. Shelf Res., 23, 575-586. https://doi.org/10.1016/S0278-4343(03)00006-2
  29. Round, F. E., 1971, Benthic marine diatoms, Oceanogr. Mar. Biol. Ann. Rev., 9, 83-139.
  30. Ruangdej, U., Fukami, K., 2004, Stimulation of photosynthesis and consequent oxygen production in anoxic bottom water by supply of low-intensity light through an optical fiber, Fish. Sci., 70, 421-429. https://doi.org/10.1111/j.1444-2906.2004.00821.x
  31. Saburova, M. A., Polikarpov, I. G., 2003, Diatom activity within soft sediments: behavioural and physiological processes, Mar. Ecol. Prog. Ser., 251, 115-126. https://doi.org/10.3354/meps251115
  32. Shaffer, G. P., Sullivan, M. J., 1988, Water column productivity attributable to displaced benthic diatoms in well mixed-shallow estuaries, J. Phycol., 24, 132-140. https://doi.org/10.1111/j.1529-8817.1988.tb04226.x
  33. Suzuki, M., Yamamoto, T., 2005, Effects of grain size of substrate on the growth of a benthic microalgae Nitzschia sp., J. Grad. Sch. Biosph. Sci. Hiroshima Univ., 44, 31-38.
  34. Yamamoto, T., Goto, I., Kawaguchi, O., Minagawa, K., Ariyoshi, E., Matsuda, O., 2008, Phytoremediation of shallow organically enriched marine sediments using benthic microalgae, Mar. Poll. Bull., 57, 108-115. https://doi.org/10.1016/j.marpolbul.2007.10.006