• Title/Summary/Keyword: atomistic simulation

Search Result 72, Processing Time 0.028 seconds

A Density Functional Theory Study of Additives in Electrolytes of a Dye Sensitized Solar Cell

  • Lee, Maeng-Eun;Kang, Moon-Sung;Cho, Kwang-Hwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2491-2494
    • /
    • 2013
  • The effect of additives in an electrolyte solution on the conversion efficiency of a dye sensitized solar cell was investigated. A density functional theory (DFT) method was used to examine the physical and chemical properties of nitrogen-containing additives adsorbed on a $TiO_2$ surface. Our results show that additives which cause lower partial charges, higher Fermi level shifts, and greater adsorption energies tend to improve the performance of DSSCs. Steric effects that prevent energy losses due to electron recombination were also found to have a positive effect on the conversion efficiency. In this work, 3-amino-5-methylthio-1H-1,2,4-triazole (AMT) has been suggested as a better additive than the most popular additive, TBP, and verified with experiments.

Dynamics of C60 Molecules in Biological Membranes: Computer Simulation Studies

  • Chang, Rak-Woo;Lee, Ju-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3195-3200
    • /
    • 2010
  • We have performed molecular dynamics simulations of atomistic models of $C_{60}$ molecules and DMPC bilayer membranes to study the static and dynamic effects of carbon nanoparticles on biological membranes. All four $C_{60}$-membrane systems were investigated representing dilute and concentrated solutions of $C_{60}$ residing either inside or outside the membrane. The concentrated $C_{60}$ molecules in water phase start forming an aggregated cluster. Due to its heavy mass, the cluster tends to adhere on the surface of the bilayer membrane, hindering both translational and rotational diffusion of individual $C_{60}$. On the other hand, once $C_{60}$ molecules accumulate inside the membrane, they are well dispersed in the central region of the bilayer membrane. Because of the homogeneous dispersion of $C_{60}$ inside the membrane, each leaflet is pushed away from the center, making the bilayer membrane thicker. This thickening of the membrane provides more room for both translational and rotational motions of $C_{60}$ inside the membrane compared to that in the water region. As a result, the dynamics of $C_{60}$ inside the membrane becomes faster with increasing its concentration.

Nanomechanical behaviors and properties of amyloid fibrils

  • Choi, Bumjoon;Lee, Sang Woo;Eom, Kilho
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • Amyloid fibrils have recently been considered as an interesting material, since they exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is larger than that of other protein materials. Despite recent findings of these excellent mechanical properties for amyloid fibrils, it has not been fully understood how these excellent mechanical properties are achieved. In this work, we have studied the nanomechanical deformation behaviors and properties of amyloid fibrils such as their elastic modulus as well as fracture strength, by using atomistic simulations, particularly steered molecular dynamics simulations. Our simulation results suggest the important role of the length of amyloid fibrils in their mechanical properties such that the fracture force of amyloid fibril is increased when the fibril length decreases. This length scale effect is attributed to the rupture mechanisms of hydrogen bonds that sustain the fibril structure. Moreover, we have investigated the effect of boundary condition on the nanomechanical deformation mechanisms of amyloid fibrils. It is found that the fracture force is critically affected by boundary condition. Our study highlights the crucial role of both fibril length and boundary condition in the nanomechanical properties of amyloid fibrils.

Carbon Nanotube Oscillator Operated by Thermal Expansion of Encapsulated Gases (삽입 가스의 부피 팽창을 이용한 탄소나노튜브 진동기)

  • Kwon, Oh-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1092-1100
    • /
    • 2005
  • We investigated a carbon nanotube (CNT) oscillator controlled by the thermal gas expansion using classical molecular dynamics simulations. When the temperature rapidly increased, the force on the CNT oscillator induced by the thermal gas expansion rapidly increased and pushed out the CNT oscillator. As the CNT oscillator extruded from the outer nanotube, the suction force on the CNT oscillator increased by the excess van der Waals(vdW) energy. When the CNT oscillator reached at the maximum extrusion point, the CNT oscillator was encapsulated into the outer nanotube by the suction force. Therefore, the CNT oscillator could be oscillated by both the gas expansion and the excess vdW interaction. As the temperature increased, the amplitude of the CNT oscillator increased. At the high temperatures, the CNT oscillator escaped from the outer nanotube, because the force on the CNT oscillator due to the thermal gas expansion was higher than the suction force due to the excess vdW energy. By the appropriate temperature controls, such as the maximum temperature, the heating rate, and the cooling rate, the CNT oscillator could be operated.

Random Dopant Fluctuation Effects of Tunneling Field-Effect Transistors (TFETs) (터널링 전계효과 트랜지스터의 불순물 분포 변동 효과)

  • Jang, Jung-Shik;Lee, Hyun Kook;Choi, Woo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.179-183
    • /
    • 2012
  • The random dopant fluctuation (RDF) effects of tunneling field-effect transistors (TFETs) have been observed by using atomistic 3-D device simulation. Due to extremely low body doping concentration, the RDF effects of TFETs have not been seriously investigated. However, in this paper, it has been found that the randomly generated and distributed source dopants increase the variation of threshold voltage ($V_{th}$), drain induced current enhancement (DICE) and subthreshold slope (SS) of TFETs. Also, some ways of relieving the RDF effects of TFETs have been presented.

Interatomic Potential Models for Ionic Systems - An Overview (이온 결합 물질에 대한 원자간 포텐셜 모델)

  • Lee, Byeong-Joo;Lee, Kwang-Ryeol
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.425-439
    • /
    • 2011
  • A review of the development history of interatomic potential models for ionic materials was carried out paying attention to the way of future development of an interatomic potential model that can cover ionic, covalent and metallic bonding materials simultaneously. Earlier pair potential models based on fixed point charges with and without considering the electronic polarization effect were found to satisfactorily describe the fundamental physical properties of crystalline oxides (Ti oxides, $SiO_2$, for example) and their polymorphs, However, pair potential models are limited in dealing with pure elements such as Ti or Si. Another limitation of the fixed point charge model is that it cannot describe the charge variation on individual atoms depending on the local atomic environment. Those limitations lead to the development of many-body potential models(EAM or Tersoff), a charge equilibration (Qeq) model, and a combination of a many-body potential model and the Qeq model. EAM+Qeq can be applied to metal oxides, while Tersoff+Qeq can be applied to Si oxides. As a means to describe reactions between Si oxides and metallic elements, the combination of 2NN MEAM that can describe both covalent and metallic elements and the Qeq model is proposed.

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

Comparative Study on the Structural and Thermodynamic Features of Amyloid-Beta Protein 40 and 42

  • Lim, Sulgi;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.237-249
    • /
    • 2014
  • Deposition of amyloid-${\beta}$ ($A{\beta}$) proteins is the conventional pathological hallmark of Alzheimer's disease (AD). The $A{\beta}$ protein formed from the amyloid precursor protein is predominated by the 40 residue protein ($A{\beta}40$) and by the 42 residue protein ($A{\beta}42$). While $A{\beta}40$ and $A{\beta}42$ differ in only two amino acid residues at the C-terminal end, $A{\beta}42$ is much more prone to aggregate and exhibits more neurotoxicity than $A{\beta}40$. Here, we investigate the molecular origin of the difference in the aggregation propensity of these two proteins by performing fully atomistic, explicit-water molecular dynamics simulations. Then, it is followed by the solvation thermodynamic analysis based on the integral-equation theory of liquids. We find that $A{\beta}42$ displays higher tendency to adopt ${\beta}$-sheet conformations than $A{\beta}40$, which would consequently facilitate the conversion to the ${\beta}$-sheet rich fibril structure. Furthermore, the solvation thermodynamic analysis on the simulated protein conformations indicates that $A{\beta}42$ is more hydrophobic than $A{\beta}40$, implying that the surrounding water imparts a larger thermodynamic driving force for the self-assembly of $A{\beta}42$. Taken together, our results provide structural and thermodynamic grounds on why $A{\beta}42$ is more aggregation-prone than $A{\beta}40$ in aqueous environments.

  • PDF

Investigation of the effect of Erythrosine B on a β-amyloid (1-40) peptide using molecular modeling method

  • Lee, Juho;Kwon, Inchan;Cho, Art E.;Jang, Seung Soon
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.14-23
    • /
    • 2015
  • Alzheimer's disease is one of the most common types of degenerative dementia. As a considerable cause of Alzheimer's disease, neurotoxic plaques composed of 39 to 42 residue-long amyloid beta($A{\beta}$) fibrils have been found in the patient's brain in large quantity. A previous study found that erythrosine B (ER), a red color food dye approved by FDA, inhibits the formation of amyloid beta fibril structures. Here, in an attempt to elucidate the inhibition mechanism, we performed molecular dynamics simulations to demonstrate the conformational change of $A{\beta}40$ induced by 2 ERs in atomistic detail. During the simulation, the ERs bound to the surfaces of both N-terminus and C-terminus regions of $A{\beta}40$ rapidly. The observed stacking of the ERs and the aromatic side chains near the N-terminus region suggests a possible inhibition mechanism in which disturbing the inter-chain stacking of PHEs destabilizes beta-sheet enriched in amyloid beta fibrils. The bound ERs block water molecules and thereby help stabilizing alpha helical structure at the main chain of C-terminus and interrupt the formation of the salt-bridge ASP23-LYS28 at the same time. Our findings can help better understanding of the current and upcoming treatment studies for Alzheimer's disease by suggesting inhibition mechanism of ER on the conformational transition of $A{\beta}40$ at the molecular level.

  • PDF

Development of Multiscale Homogenization Model to Predict Thermo-Mechanical Properties of Nanocomposites including Carbon Nanotube Bundle (탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계 특성 예측을 위한 멀티스케일 균질화 모델 개발)

  • Wang, Haolin;Shin, Hyunseong
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.198-204
    • /
    • 2020
  • In this study, we employ the full atomistic molecular dynamics simulation and finite element homogenization method to predict the thermo-mechanical properties of nanocomposites including carbon nanotube bundle. As the number of carbon nanotubes within the single bundle increases, the effective in-plane Young's modulus and in-plane shear modulus decrease, and in-plane thermal expansion coefficient increases, despite the same volume fraction of carbon nanotubes. To investigate the thickness of interphase zone, we employ the radial density distribution. It is investigated that the interphase thickness is almost independent on the number of carbon nanotubes within the single bundle. It is assumed that the matrix and interphase are isotropic materials. According to the predicted thermo-mechanical properties of interphase zone, the Young's modulus and shear modulus of interphase zone clearly decrease, and the thermal expansion coefficient increases. Based on the thermo-mechanical interphase behavior, we developed the multiscale homogenization model to predict the thermo-mechanical properties of PLA nanocomposites that include the carbon nanotube bundle.