DOI QR코드

DOI QR Code

A Density Functional Theory Study of Additives in Electrolytes of a Dye Sensitized Solar Cell

  • Lee, Maeng-Eun (R&D Center, Samsunng SDI Co., LTD.) ;
  • Kang, Moon-Sung (Department of Environmental Engineering, Sangmyung University) ;
  • Cho, Kwang-Hwi (Department of Bioinformatics and Life Science, Soongsil University)
  • Received : 2013.05.25
  • Accepted : 2013.05.31
  • Published : 2013.08.20

Abstract

The effect of additives in an electrolyte solution on the conversion efficiency of a dye sensitized solar cell was investigated. A density functional theory (DFT) method was used to examine the physical and chemical properties of nitrogen-containing additives adsorbed on a $TiO_2$ surface. Our results show that additives which cause lower partial charges, higher Fermi level shifts, and greater adsorption energies tend to improve the performance of DSSCs. Steric effects that prevent energy losses due to electron recombination were also found to have a positive effect on the conversion efficiency. In this work, 3-amino-5-methylthio-1H-1,2,4-triazole (AMT) has been suggested as a better additive than the most popular additive, TBP, and verified with experiments.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353,737. https://doi.org/10.1038/353737a0
  2. Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsukagoshi, S.; Abe, Y.; Sugihara, H.; Arakawa, H. Chem. Commun. 2000, 13, 1173.
  3. Higuchi, K.; Kato, N. R&D Review of Toyota CRDL; Toyota, Japan, 2006, 41(1), 51.
  4. Toyoda, T.; Sano, T.; Nakajima, J.; Doi, S.; Fukumoto, S.; Ito, A.; Tohyama, T.; Yoshida, M.; Kanagawa, T.; Motohiro, T.; Shiga, T.; Higuchi, K.; Tanaka, K.; Takeda, Y.; Fukano, T.; Katoh, N.; Takeichi, A.; Takechi, K.; Hiozawa, M. J. Photochem. Photobiol. A: Chemistry 2004, 164(1-3), 203. https://doi.org/10.1016/j.jphotochem.2003.11.022
  5. Motohiro, T. Nippon Kagakkai Koen Yokoshu 2005, 85(1), 614.
  6. Takeda, Y.; Kato, N.; Higuchi, K.; Takeichi, A.; Motohiro, T.; Fukumoto, S.; Sano, T.; Toyoda, T. Solar Energy Materials and Solar Cells 2009, 93(6-7), 808. https://doi.org/10.1016/j.solmat.2008.09.054
  7. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Bessho, T.; Gratzel, M. J. Am. Chem. Soc. 2005, 127, 16835. https://doi.org/10.1021/ja052467l
  8. Gratzel, M. J. Photochem. Photobiol. 2003, C 4, 145. https://doi.org/10.1016/S1389-5567(03)00026-1
  9. Gratzel, M. Prog. Photovolt.: Res. Appl. 2006, 14, 429. https://doi.org/10.1002/pip.712
  10. Jang, Y. H.; Xin, Z.; Byun, M.; Jang, Y. J.; Lin, Z.; Kim, D. H. Nano Letters 2011, 12, 479.
  11. Greijer, H.; Lindgren, J.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 6314. https://doi.org/10.1021/jp011062u
  12. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382. https://doi.org/10.1021/ja00067a063
  13. Huang, S. Y.; Schlichthorl, G.; Nozik, A. J.; Grätzel, M.; Frank, A. J. J. Phys. Chem. B 1997, 101, 2576. https://doi.org/10.1021/jp962377q
  14. Schlichthorl, G.; Huang S. Y.; Spargue, J.; Frank, A. J. J. Phys. Chem. B 1997, 101, 8141. https://doi.org/10.1021/jp9714126
  15. Asaduzzaman, A. M.; Schreckenbach, G. Phys. Chem. Chem. Phys. 2010, 12, 14609. https://doi.org/10.1039/c0cp01304h
  16. Kay, A.; Gratzel, M. J. Phys. Chem. 1993, 97, 6272. https://doi.org/10.1021/j100125a029
  17. Lee, K. M.; Suryanarayanan, V.; Ho, K. C.; Thomas, K. R. J.; Lin, J. T. Solar Energy Materials & Solar Cells 2007, 91, 1426. https://doi.org/10.1016/j.solmat.2007.03.009
  18. Kusama, H.; Kurahisge, M.; Arakawa, H. J. Photochem. Photobiol. 2005, 169, 169. https://doi.org/10.1016/j.jphotochem.2004.06.012
  19. Kusama, H.; Orita, H.; Sugihara, H. Langmuir 2008, 24, 4411. https://doi.org/10.1021/la703696f
  20. Frisch, M. J. et al. Gaussian03, 2004, Gaussian, Inc.
  21. Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (Theochem) 1998, 169, 41-62.
  22. Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211. https://doi.org/10.1021/ja00544a007
  23. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1983, 78, 4066. https://doi.org/10.1063/1.445134
  24. Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Gratzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.
  25. Park, N. G.; van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2000, 104, 8989.
  26. White, J. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954. https://doi.org/10.1103/PhysRevB.50.4954
  27. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864. https://doi.org/10.1103/PhysRev.136.B864
  28. Levy, M. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 6062. https://doi.org/10.1073/pnas.76.12.6062
  29. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865

Cited by

  1. Natural dye extracted from karkadah and its application in dye-sensitized solar cells: experimental and density functional theory study vol.55, pp.4, 2016, https://doi.org/10.1364/AO.55.000838
  2. nanoparticle size and kind/size of dyes in the mechanism and conversion efficiency of dye sensitized solar cells vol.19, pp.18, 2017, https://doi.org/10.1039/C7CP01159H
  3. Enhanced Cycle Life and Rate Capability of Single-Crystal, Ni-Rich LiNi0.9Co0.05Mn0.05O2 Enabled by 1,2,4-1H-Triazole Additive vol.13, pp.14, 2013, https://doi.org/10.1021/acsami.1c02043