References
- Ajayan, P. M.; Charlier, J. C.; Rinzler, A. G. Proc. Natl. Acad. Sci. USA 1999, 96, 14199. https://doi.org/10.1073/pnas.96.25.14199
- de Jonge, N.; Bonard, J. M. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2004, 362, 2239. https://doi.org/10.1098/rsta.2004.1438
- Dresselhaus, M. S.; Dai, H. MRS Bull. 2004, 29, 237. https://doi.org/10.1557/mrs2004.74
- Lin, Y.; Taylor, S.; Li, H. P.; Fernando, K. A. S.; Qu, L. W.; Wang, W.; Gu, L. R.; Zhou, B.; Sun, Y. P. J. Mater. Chem. 2004, 14, 527. https://doi.org/10.1039/b314481j
- Bosi, S.; Da Ros, T.; Spalluto, G.; Prato, M. Eur. J. Med. Chem. 2003, 38, 913. https://doi.org/10.1016/j.ejmech.2003.09.005
- Prato, M. Fullerene materials. In Fullerenes And Related Structures; Springer-Verlag: Berlin, Germany, 1999; Vol. 199, p 173.
- Subramoney, S. Adv. Mater. 1998, 10, 1157. https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1157::AID-ADMA1157>3.0.CO;2-N
- Degiorgi, L. Adv. Phys. 1998, 47, 207. https://doi.org/10.1080/000187398243555
- Prato, M. J. Mater. Chem. 1997, 7, 1097. https://doi.org/10.1039/a700080d
- Ball, P. Nature 2001, 414, 142. https://doi.org/10.1038/35102721
- Endo, M.; Hayashi, T.; Kim, Y. A.; Terrones, M.; Dresselhaus, M. S. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2004, 362, 2223. https://doi.org/10.1098/rsta.2004.1437
- Colvin, V. L. Nat. Biotechnol. 2003, 21, 1166. https://doi.org/10.1038/nbt875
- Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.; Ausman, K. D.; Tao, Y. J.; Sitharaman, B.; Wilson, L. J.; Hughes, J. B.; West, J. L.; Colvin, V. L. Nano Lett. 2004, 4, 1881. https://doi.org/10.1021/nl0489586
- Warheit, D. B.; Laurence, B. R.; Reed, K. L.; Roach, D. H.; Reynolds, G. A. M.; Webb, T. R. Toxicol. Sci. 2004, 77, 117. https://doi.org/10.1093/toxsci/kfg228
- Lam, C. W.; James, J. T.; McCluskey, R.; Hunter, R. L. Toxicol. Sci. 2004, 77, 126.
- Shvedova, A. A.; Castranova, V.; Kisin, E. R.; Schwegler-Berry, D.; Murray, A. R.; Gandelsman, V. Z.; Maynard, A.; Baron, P. J. Toxicol. Env. Health Pt A 2003, 66, 1909. https://doi.org/10.1080/713853956
- Huczko, A.; Lange, H.; Calko, E.; Grubek-Jaworska, H.; Droszcz, P. Fullerene Sci. Technol. 2001, 9, 251. https://doi.org/10.1081/FST-100102973
- Huczko, A.; Lange, H.; Calko, E. Fullerene Sci. Technol. 1999, 7, 935. https://doi.org/10.1080/10641229909351390
- Maynard, A. D.; Baron, P. A.; Foley, M.; Shvedova, A. A.; Kisin, E. R.; Castranova, V. J. Toxicol. Env. Health Pt A 2004, 67, 87. https://doi.org/10.1080/15287390490253688
- Arnall, A. H. Future Technologies, Today's Choices; Greenpeace Environmental Trust: London, 2003.
- Merlo, D. F.; Garattini, S.; Gelatti, U.; Simonati, C.; Covolo, L.; Ceppi, M.; Donato, F. Occup. Environ. Med. 2004, 61.
- Uragoda, C. G. Occup. Med.-Oxf. 1997, 47, 269. https://doi.org/10.1093/occmed/47.5.269
- Adelmann, P.; Baierl, T.; Drosselmeyer, E.; Politis, G.; Seidel, A.; Schwegler-Berry, D.; Steinleitner, G., Effects of Fullerenes on Alveolar Macrophages In Vitro; ILSI Press: Washington, DC, 1994.
- Saiz, L.; Bandyopadhyay, S.; Klein, M. L. Biosci. Rep. 2002, 22, 151. https://doi.org/10.1023/A:1020130420869
- Redondo, A.; LeSar, R. Ann. Rev. Mater. Res. 2004, 34, 279. https://doi.org/10.1146/annurev.matsci.34.070503.123908
- Voth, G. A. Front. Biosci. 2003, 8, S1384. https://doi.org/10.2741/1213
- Schlick, T.; Barth, E.; Mandziuk, M. Annu. Rev. Biophys. Biomolec. Struct. 1997, 26, 181. https://doi.org/10.1146/annurev.biophys.26.1.181
- Kohl, P.; Noble, D.; Winslow, R. L.; Hunter, P. J. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2000, 358, 579. https://doi.org/10.1098/rsta.2000.0547
- Moraitakis, G.; Purkiss, A. G.; Goodfellow, J. M. Rep. Prog. Phys. 2003, 66, 383. https://doi.org/10.1088/0034-4885/66/3/203
- Florian, J.; Goodman, M. F.; Warshel, A. Proc. Natl. Acad. Sci. USA 2005, 102, 6819. https://doi.org/10.1073/pnas.0408173102
- Warshel, A. Proc. Natl. Acad. Sci. USA 2005, 102, 1813. https://doi.org/10.1073/pnas.0409788102
- Zhu, Z. W.; Schuster, D. I.; Tuckerman, M. E. Biochemistry 2003,42, 1326. https://doi.org/10.1021/bi020496s
- Xie, Y. H.; Soh, A. K. Mater. Lett. 2005, 59, 971. https://doi.org/10.1016/j.matlet.2004.10.079
- Gao, H. J.; Kong, Y. Annual Review Of Materials Research 2004, 34, 123. https://doi.org/10.1146/annurev.matsci.34.040203.120402
- Noon, W. H.; Kong, Y. F.; Ma, J. P. Proc. Natl. Acad. Sci. USA 2002, 99, 6466. https://doi.org/10.1073/pnas.022532599
- Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6506. https://doi.org/10.1021/ja00068a005
- Friedman, S. H.; Ganapathi, P. S.; Rubin, Y.; Kenyon, G. L. J. Med. Chem. 1998, 41, 2424. https://doi.org/10.1021/jm970689r
- Yeh, I. C.; Hummer, G. Proc. Natl. Acad. Sci. USA 2004, 101, 12177. https://doi.org/10.1073/pnas.0402699101
- Srinivas, G.; Klein, M. L. Nanotechnology 2004, 15, 1289. https://doi.org/10.1088/0957-4484/15/9/030
- Qiao, R.; Roberts, A. P.; Mount, A. S.; Klaine, S. J.; Ke, P. C. Nano Lett. 2007, 7, 614. https://doi.org/10.1021/nl062515f
- Li, L.; Davande, H.; Bedrov, D.; Smith, G. D. J. Phys. Chem. B 2007, 111, 4067. https://doi.org/10.1021/jp064982r
- Bedrov, D.; Smith, G. D.; Davande, H.; Li, L. J. Phys. Chem. B 2008, 112, 2078. https://doi.org/10.1021/jp075149c
- Chang, R.; Violi, A. J. Phys. Chem. B 2006, 110, 5073. https://doi.org/10.1021/jp0565148
- Choe, S.; Chang, R.; Jeon, J.; Violi, A. Biophys. J. 2008, 95, 4102. https://doi.org/10.1529/biophysj.107.123976
- Wong-Ekkabut, J.; Baoukina, S.; Triampo, W.; Tang, I.-M.; Tieleman, D. P.; Monticelli, L. Nature Nanotech. 2008, 3, 363. https://doi.org/10.1038/nnano.2008.130
- Smith, W.; Forester, T. R. J. Molec. Graphics 1996, 14, 136. https://doi.org/10.1016/S0263-7855(96)00043-4
- Mayo, S. L.; Olafson, B. D.; Goddard, W. A., III. J. Phys. Chem. 1990, 94, 8897. https://doi.org/10.1021/j100389a010
- Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327. https://doi.org/10.1016/0021-9991(77)90098-5
- Smondyrev, A. M.; Berkowitz, M. L. J. Comput. Chem. 1999, 20, 531. https://doi.org/10.1002/(SICI)1096-987X(19990415)20:5<531::AID-JCC5>3.0.CO;2-3
- Chang, R. W.; Ayton, G. S.; Voth, G. A. J. Chem. Phys. 2005, 122, 244716. https://doi.org/10.1063/1.1931651
- Smondyrev, A. M.; Berkowitz, M. L. J. Chem. Phys. 1999, 110, 3981. https://doi.org/10.1063/1.478278
- Smondyrev, A. M.; Voth, G. A. Biophys. J. 2002, 82, 1460. https://doi.org/10.1016/S0006-3495(02)75500-8
- Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. https://doi.org/10.1063/1.445869
- Torrie, G. M.; Valleau, J. P. J. Comput. Phys. 1977, 23, 187. https://doi.org/10.1016/0021-9991(77)90121-8
- Roux, B. Comput. Phys. Commun. 1995, 91, 275. https://doi.org/10.1016/0010-4655(95)00053-I
- Johnson, R. D.; Yannoni, C. S.; Dorn, H. C.; Salem, J. R.; Bethune, D. S. Science 1992, 255, 1235. https://doi.org/10.1126/science.255.5049.1235
- Johnson, R. D.; Bethune, D. S.; Yannoni, C. S. Acc. Chem. Res. 1992, 25, 169. https://doi.org/10.1021/ar00015a011
- Li, L.; Bedrov, D.; Smith, G. D. J. Phys. Chem. B 2006, 110, 10509. https://doi.org/10.1021/jp060718m
Cited by
- Investigating effects of nano-particles infiltration on mechanical properties of cell membrane using atomic force microscopy vol.55, pp.6, 2012, https://doi.org/10.1007/s11433-012-4724-7
- Mechanical characteristics of human red blood cell membrane change due to C60 nanoparticle infiltration vol.15, pp.7, 2013, https://doi.org/10.1039/c2cp42850d
- Effect of Self-Assembly of Fullerene Nano-Particles on Lipid Membrane vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0077436
- translocation across lipid bilayers vol.10, pp.13, 2014, https://doi.org/10.1039/C3SM52211C
- Free Energy of PAMAM Dendrimer Adsorption onto Model Biological Membranes vol.118, pp.24, 2014, https://doi.org/10.1021/jp501755k
- Computer simulations of the interaction of fullerene clusters with lipid membranes vol.43, pp.18, 2017, https://doi.org/10.1080/08927022.2017.1332410
- through skin bilayer: effect of concentration on barrier properties vol.9, pp.12, 2017, https://doi.org/10.1039/C6NR09186E
- Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical and numerical modeling vol.8, pp.6, 2013, https://doi.org/10.2217/nnm.13.81
- Advances in studies of nanoparticle–biomembrane interactions vol.10, pp.1, 2015, https://doi.org/10.2217/nnm.14.167
- Noncovalent Self‐Assembled Monolayers on Graphene as a Highly Stable Platform for Molecular Tunnel Junctions vol.28, pp.4, 2010, https://doi.org/10.1002/adma.201504207
- Translocation of a hydroxyl functionalized carbon dot across a lipid bilayer: an all-atom molecular dynamics simulation study vol.22, pp.11, 2020, https://doi.org/10.1039/c9cp05999g
- Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers vol.29, pp.4, 2010, https://doi.org/10.1088/1674-1056/ab7d9f