DOI QR코드

DOI QR Code

Dynamics of C60 Molecules in Biological Membranes: Computer Simulation Studies

  • Chang, Rak-Woo (Department of Chemistry, Kwangwoon University) ;
  • Lee, Ju-Min (Department of Chemistry, Kwangwoon University)
  • Received : 2010.07.16
  • Accepted : 2010.09.07
  • Published : 2010.11.20

Abstract

We have performed molecular dynamics simulations of atomistic models of $C_{60}$ molecules and DMPC bilayer membranes to study the static and dynamic effects of carbon nanoparticles on biological membranes. All four $C_{60}$-membrane systems were investigated representing dilute and concentrated solutions of $C_{60}$ residing either inside or outside the membrane. The concentrated $C_{60}$ molecules in water phase start forming an aggregated cluster. Due to its heavy mass, the cluster tends to adhere on the surface of the bilayer membrane, hindering both translational and rotational diffusion of individual $C_{60}$. On the other hand, once $C_{60}$ molecules accumulate inside the membrane, they are well dispersed in the central region of the bilayer membrane. Because of the homogeneous dispersion of $C_{60}$ inside the membrane, each leaflet is pushed away from the center, making the bilayer membrane thicker. This thickening of the membrane provides more room for both translational and rotational motions of $C_{60}$ inside the membrane compared to that in the water region. As a result, the dynamics of $C_{60}$ inside the membrane becomes faster with increasing its concentration.

Keywords

References

  1. Ajayan, P. M.; Charlier, J. C.; Rinzler, A. G. Proc. Natl. Acad. Sci. USA 1999, 96, 14199. https://doi.org/10.1073/pnas.96.25.14199
  2. de Jonge, N.; Bonard, J. M. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2004, 362, 2239. https://doi.org/10.1098/rsta.2004.1438
  3. Dresselhaus, M. S.; Dai, H. MRS Bull. 2004, 29, 237. https://doi.org/10.1557/mrs2004.74
  4. Lin, Y.; Taylor, S.; Li, H. P.; Fernando, K. A. S.; Qu, L. W.; Wang, W.; Gu, L. R.; Zhou, B.; Sun, Y. P. J. Mater. Chem. 2004, 14, 527. https://doi.org/10.1039/b314481j
  5. Bosi, S.; Da Ros, T.; Spalluto, G.; Prato, M. Eur. J. Med. Chem. 2003, 38, 913. https://doi.org/10.1016/j.ejmech.2003.09.005
  6. Prato, M. Fullerene materials. In Fullerenes And Related Structures; Springer-Verlag: Berlin, Germany, 1999; Vol. 199, p 173.
  7. Subramoney, S. Adv. Mater. 1998, 10, 1157. https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1157::AID-ADMA1157>3.0.CO;2-N
  8. Degiorgi, L. Adv. Phys. 1998, 47, 207. https://doi.org/10.1080/000187398243555
  9. Prato, M. J. Mater. Chem. 1997, 7, 1097. https://doi.org/10.1039/a700080d
  10. Ball, P. Nature 2001, 414, 142. https://doi.org/10.1038/35102721
  11. Endo, M.; Hayashi, T.; Kim, Y. A.; Terrones, M.; Dresselhaus, M. S. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2004, 362, 2223. https://doi.org/10.1098/rsta.2004.1437
  12. Colvin, V. L. Nat. Biotechnol. 2003, 21, 1166. https://doi.org/10.1038/nbt875
  13. Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.; Ausman, K. D.; Tao, Y. J.; Sitharaman, B.; Wilson, L. J.; Hughes, J. B.; West, J. L.; Colvin, V. L. Nano Lett. 2004, 4, 1881. https://doi.org/10.1021/nl0489586
  14. Warheit, D. B.; Laurence, B. R.; Reed, K. L.; Roach, D. H.; Reynolds, G. A. M.; Webb, T. R. Toxicol. Sci. 2004, 77, 117. https://doi.org/10.1093/toxsci/kfg228
  15. Lam, C. W.; James, J. T.; McCluskey, R.; Hunter, R. L. Toxicol. Sci. 2004, 77, 126.
  16. Shvedova, A. A.; Castranova, V.; Kisin, E. R.; Schwegler-Berry, D.; Murray, A. R.; Gandelsman, V. Z.; Maynard, A.; Baron, P. J. Toxicol. Env. Health Pt A 2003, 66, 1909. https://doi.org/10.1080/713853956
  17. Huczko, A.; Lange, H.; Calko, E.; Grubek-Jaworska, H.; Droszcz, P. Fullerene Sci. Technol. 2001, 9, 251. https://doi.org/10.1081/FST-100102973
  18. Huczko, A.; Lange, H.; Calko, E. Fullerene Sci. Technol. 1999, 7, 935. https://doi.org/10.1080/10641229909351390
  19. Maynard, A. D.; Baron, P. A.; Foley, M.; Shvedova, A. A.; Kisin, E. R.; Castranova, V. J. Toxicol. Env. Health Pt A 2004, 67, 87. https://doi.org/10.1080/15287390490253688
  20. Arnall, A. H. Future Technologies, Today's Choices; Greenpeace Environmental Trust: London, 2003.
  21. Merlo, D. F.; Garattini, S.; Gelatti, U.; Simonati, C.; Covolo, L.; Ceppi, M.; Donato, F. Occup. Environ. Med. 2004, 61.
  22. Uragoda, C. G. Occup. Med.-Oxf. 1997, 47, 269. https://doi.org/10.1093/occmed/47.5.269
  23. Adelmann, P.; Baierl, T.; Drosselmeyer, E.; Politis, G.; Seidel, A.; Schwegler-Berry, D.; Steinleitner, G., Effects of Fullerenes on Alveolar Macrophages In Vitro; ILSI Press: Washington, DC, 1994.
  24. Saiz, L.; Bandyopadhyay, S.; Klein, M. L. Biosci. Rep. 2002, 22, 151. https://doi.org/10.1023/A:1020130420869
  25. Redondo, A.; LeSar, R. Ann. Rev. Mater. Res. 2004, 34, 279. https://doi.org/10.1146/annurev.matsci.34.070503.123908
  26. Voth, G. A. Front. Biosci. 2003, 8, S1384. https://doi.org/10.2741/1213
  27. Schlick, T.; Barth, E.; Mandziuk, M. Annu. Rev. Biophys. Biomolec. Struct. 1997, 26, 181. https://doi.org/10.1146/annurev.biophys.26.1.181
  28. Kohl, P.; Noble, D.; Winslow, R. L.; Hunter, P. J. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2000, 358, 579. https://doi.org/10.1098/rsta.2000.0547
  29. Moraitakis, G.; Purkiss, A. G.; Goodfellow, J. M. Rep. Prog. Phys. 2003, 66, 383. https://doi.org/10.1088/0034-4885/66/3/203
  30. Florian, J.; Goodman, M. F.; Warshel, A. Proc. Natl. Acad. Sci. USA 2005, 102, 6819. https://doi.org/10.1073/pnas.0408173102
  31. Warshel, A. Proc. Natl. Acad. Sci. USA 2005, 102, 1813. https://doi.org/10.1073/pnas.0409788102
  32. Zhu, Z. W.; Schuster, D. I.; Tuckerman, M. E. Biochemistry 2003,42, 1326. https://doi.org/10.1021/bi020496s
  33. Xie, Y. H.; Soh, A. K. Mater. Lett. 2005, 59, 971. https://doi.org/10.1016/j.matlet.2004.10.079
  34. Gao, H. J.; Kong, Y. Annual Review Of Materials Research 2004, 34, 123. https://doi.org/10.1146/annurev.matsci.34.040203.120402
  35. Noon, W. H.; Kong, Y. F.; Ma, J. P. Proc. Natl. Acad. Sci. USA 2002, 99, 6466. https://doi.org/10.1073/pnas.022532599
  36. Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6506. https://doi.org/10.1021/ja00068a005
  37. Friedman, S. H.; Ganapathi, P. S.; Rubin, Y.; Kenyon, G. L. J. Med. Chem. 1998, 41, 2424. https://doi.org/10.1021/jm970689r
  38. Yeh, I. C.; Hummer, G. Proc. Natl. Acad. Sci. USA 2004, 101, 12177. https://doi.org/10.1073/pnas.0402699101
  39. Srinivas, G.; Klein, M. L. Nanotechnology 2004, 15, 1289. https://doi.org/10.1088/0957-4484/15/9/030
  40. Qiao, R.; Roberts, A. P.; Mount, A. S.; Klaine, S. J.; Ke, P. C. Nano Lett. 2007, 7, 614. https://doi.org/10.1021/nl062515f
  41. Li, L.; Davande, H.; Bedrov, D.; Smith, G. D. J. Phys. Chem. B 2007, 111, 4067. https://doi.org/10.1021/jp064982r
  42. Bedrov, D.; Smith, G. D.; Davande, H.; Li, L. J. Phys. Chem. B 2008, 112, 2078. https://doi.org/10.1021/jp075149c
  43. Chang, R.; Violi, A. J. Phys. Chem. B 2006, 110, 5073. https://doi.org/10.1021/jp0565148
  44. Choe, S.; Chang, R.; Jeon, J.; Violi, A. Biophys. J. 2008, 95, 4102. https://doi.org/10.1529/biophysj.107.123976
  45. Wong-Ekkabut, J.; Baoukina, S.; Triampo, W.; Tang, I.-M.; Tieleman, D. P.; Monticelli, L. Nature Nanotech. 2008, 3, 363. https://doi.org/10.1038/nnano.2008.130
  46. Smith, W.; Forester, T. R. J. Molec. Graphics 1996, 14, 136. https://doi.org/10.1016/S0263-7855(96)00043-4
  47. Mayo, S. L.; Olafson, B. D.; Goddard, W. A., III. J. Phys. Chem. 1990, 94, 8897. https://doi.org/10.1021/j100389a010
  48. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327. https://doi.org/10.1016/0021-9991(77)90098-5
  49. Smondyrev, A. M.; Berkowitz, M. L. J. Comput. Chem. 1999, 20, 531. https://doi.org/10.1002/(SICI)1096-987X(19990415)20:5<531::AID-JCC5>3.0.CO;2-3
  50. Chang, R. W.; Ayton, G. S.; Voth, G. A. J. Chem. Phys. 2005, 122, 244716. https://doi.org/10.1063/1.1931651
  51. Smondyrev, A. M.; Berkowitz, M. L. J. Chem. Phys. 1999, 110, 3981. https://doi.org/10.1063/1.478278
  52. Smondyrev, A. M.; Voth, G. A. Biophys. J. 2002, 82, 1460. https://doi.org/10.1016/S0006-3495(02)75500-8
  53. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. https://doi.org/10.1063/1.445869
  54. Torrie, G. M.; Valleau, J. P. J. Comput. Phys. 1977, 23, 187. https://doi.org/10.1016/0021-9991(77)90121-8
  55. Roux, B. Comput. Phys. Commun. 1995, 91, 275. https://doi.org/10.1016/0010-4655(95)00053-I
  56. Johnson, R. D.; Yannoni, C. S.; Dorn, H. C.; Salem, J. R.; Bethune, D. S. Science 1992, 255, 1235. https://doi.org/10.1126/science.255.5049.1235
  57. Johnson, R. D.; Bethune, D. S.; Yannoni, C. S. Acc. Chem. Res. 1992, 25, 169. https://doi.org/10.1021/ar00015a011
  58. Li, L.; Bedrov, D.; Smith, G. D. J. Phys. Chem. B 2006, 110, 10509. https://doi.org/10.1021/jp060718m

Cited by

  1. Investigating effects of nano-particles infiltration on mechanical properties of cell membrane using atomic force microscopy vol.55, pp.6, 2012, https://doi.org/10.1007/s11433-012-4724-7
  2. Mechanical characteristics of human red blood cell membrane change due to C60 nanoparticle infiltration vol.15, pp.7, 2013, https://doi.org/10.1039/c2cp42850d
  3. Effect of Self-Assembly of Fullerene Nano-Particles on Lipid Membrane vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0077436
  4. translocation across lipid bilayers vol.10, pp.13, 2014, https://doi.org/10.1039/C3SM52211C
  5. Free Energy of PAMAM Dendrimer Adsorption onto Model Biological Membranes vol.118, pp.24, 2014, https://doi.org/10.1021/jp501755k
  6. Computer simulations of the interaction of fullerene clusters with lipid membranes vol.43, pp.18, 2017, https://doi.org/10.1080/08927022.2017.1332410
  7. through skin bilayer: effect of concentration on barrier properties vol.9, pp.12, 2017, https://doi.org/10.1039/C6NR09186E
  8. Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical and numerical modeling vol.8, pp.6, 2013, https://doi.org/10.2217/nnm.13.81
  9. Advances in studies of nanoparticle–biomembrane interactions vol.10, pp.1, 2015, https://doi.org/10.2217/nnm.14.167
  10. Noncovalent Self‐Assembled Monolayers on Graphene as a Highly Stable Platform for Molecular Tunnel Junctions vol.28, pp.4, 2010, https://doi.org/10.1002/adma.201504207
  11. Translocation of a hydroxyl functionalized carbon dot across a lipid bilayer: an all-atom molecular dynamics simulation study vol.22, pp.11, 2020, https://doi.org/10.1039/c9cp05999g
  12. Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers vol.29, pp.4, 2010, https://doi.org/10.1088/1674-1056/ab7d9f