• Title/Summary/Keyword: atomic decomposition

Search Result 151, Processing Time 0.023 seconds

Analysis of Internal Flow and Control Speed for NH3 (Ammonia) Leakage Scenario of ALD Facility (ALD 설비의 NH3(Ammonia)누출 시나리오에 대한 내부유동 및 제어 속도 해석)

  • Lee, Seoung-Sam;An, Hyeong-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.22-27
    • /
    • 2022
  • Atomic Layer Deposition (ALD) is a facility that deposits an atomic layer on a wafer by causing a chemical reaction after decomposition using heat or plasma by inputting two or more gases during the semiconductor process. The main gas used at this time is NH3 (Ammonia). NH3 has a relatively narrow explosive range with an upper limit (UFL) of 33.6% and a lower limit (LEL) of 15%, but it can explode if a large amount suddenly gathers in one place. It is Velocity and fatal if inhaled or in contact with the skin. NH3 (Ammonia) of ALD (Atomic Layer Deposition) facility is supplied to the chamber through the gas inlet and discharged after the reaction.

Removal of Uranium by an Alkalization and an Acidification from the Thermal Decomposed Solid Waste of Uranium-bearing Sludge (알카리화 및 산성화에 의한 우라늄 함유 슬러지의 열분해 고체 폐기물로부터 우라늄 제거)

  • Lee, Eil-Hee;Yang, Han-Beom;Lee, Keun-Young;Kim, Kwang-Wook;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.85-93
    • /
    • 2013
  • This study has been carried out to elucidate the characteristics of the dissolution for Thermal Decomposed Solid Waste of uranium-bearing sludge (TDSW), the removal of impurities by an alkalization in a nitric acid dissolving solution of TDSW, and the selective removal (/recovery) of uranium by an acidification in an carbonate alkali solution, respectively. TDSW generated by thermal decomposition of U-bearing sludge which was produced in the uranium conversion plant operation, was stored in KAERI as a solid-powder type. It is found that the dissolution of TDSW is more effective in nitric acid dissolution than oxidative-dissolution with carbonate. At 1 M nitric acid solution, TDSW was undissolved about 30wt% as a solid residue, and uranium contained in TDSW was dissolved more than 99%. In order to the alkalization for the nitric acid dissolving solution of TDSW, carbonate alkalization is more effective with respect to remove the impurities. At the carbonate alkali solution controlled to about 9 of pH, Al, Ca, Fe and Zn co-dissolved with U in dissolution step was removed about $98{\pm}1%$. On the other hand, U could be recovered more than 99% by an acidification at pH about 3 in a carbonate alkali solution, which was nearly removed the impurities, adding 0.5M $H_2O_2$. It was found that uranium could be selectively recovered (/removed) from TDSW.

Electron Beam-Induced Modification of Poly(dimethyl siloxane) (전자빔을 이용한 Poly(dimethyl siloxane)의 개질)

  • Kang, Dong-Woo;Kuk, In-Seol;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang;Mun, Sung-Yong;Lee, Young-Moo
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.157-160
    • /
    • 2011
  • In this paper, poly (dimethyl siloxane) (PDMS) was modified using electron beam irradiation and its property was investigated. PDMS sheets prepared using a conventional thermal curing method were irradiated by electron beams at absorbed doses between 20 and 200 kGy and their properties were characterized using swelling degree and contact angle measurements, universal testing machine (UTM), thermogravimetric analyzer (TGA), and X -ray photoelectron spectrometer (XPS). The results of the swelling degree measurements, UTM, and TGA revealed that the swelling degree of the irradiated PDMS sheets was reduced down to 24% in comparison to the control sheet, and their compression strength and thermal decomposition temperature increased up to maximum 2.5 MFa and $10^{\circ}C$, respectively, due to the increase in crosslinking density by irradiation. In addition, on the basis of the results of contact angle measurements and XPS, the wettability of the PDMS sheets was enhanced up to 24% owing to the generation of hydrophilic functional groups on the PDMS surface by oxidation during electron beam irradiation.

AFM Study on Surface Film Formation on a Graphite Negative Electrode in a $LiPF_6$-based Non-Aqueous Solution (AFM을 이용한 $LiPF_6$를 주성분으로 하는 비수용액중에서의 흑연 음극 표면에 형성되는 피막에 관한 연구)

  • Jeong, Soon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1313-1318
    • /
    • 2006
  • The mechanism fur the surface film formation was studied by in situ Atomic Force Microscopy (AFM) observation of a highly oriented pyrolytic graphite (HOPG) basal plane surface during cyclic voltammetry at a slow scan-rate of 0.5 mV $s^{-1}$ in 1 moi $dm^{-3}$ (M) $LiPF_6$ dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). Decomposition of the electrolyte solution began at a potential around 2.15 V vs. $Li^+$/Li on step edges. In the potential range 0.95-0.8 V vs. $Li^+$/Li, flat areas (hill-like structures) and large swelling appeared on the surface. It is considered that these two features were formed by the intercalation of solvated lithium ions and their decomposition beneath the surface, respectively. At potentials more negative than 0.80 V vs. $Li^+$/Li, particle-like precipitates appeared on the basal plane surface. After the first cycle, the thickness of the precipitate layer was 30 nm. The precipitates were considered to be decomposition of the lithium salt ($LiPF_6$) and solvent molecules (EC and DEC), and to have an important role in suppressing further solvent decomposition on the basal plane.

  • PDF

Effects of Co-solvent on Passivation Film of Lithium Surface (리튬 표면의 부동태 피막에 미치는 공용매의 영향)

  • Kang, Jihoon;Jeong, Soonki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.305-310
    • /
    • 2014
  • This study examined the morphological changes in lithium surface immersed in 1mol $dm^{-3}$ (M) $LiPF_6 $ dissolved in propylene carbonate (PC) containing different 1,2-dimethoxyethane (DME) concentrations as a co-solvent. A passivation film was formed on the surface of lithium metal by electrolyte decomposition. The passivation film formation reactions were significantly affected by the amount of co-solvent, DME, in electrolyte solution. A stable film was obtained from the 1 M $LiPF_6 $ / PC:DME (67:33) solution in which lithium electrode showed good electrochemical performances. Atomic force microscope (AFM) and electrochemical impedance spectroscopy (EIS) results revealed that there were no direct correlations between changes in the surface morphology of lithium metal and the resistance behavior of its passivation film.

Feedback flow control using the POD method on the backward facing step wall model

  • Cho, Sung-In;Lee, In;Lee, Seung-Jun;Lee, Choong Yun;Park, Soo Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.428-434
    • /
    • 2012
  • Missiles suffer from flight instability problems at high angles of attack, since vortex flow over a fuselage cause lateral force to the body. To overcome this problem at a high angle of attack, the development of a real time vortex controller is needed. In this paper, Proper Orthogonal Decomposition (POD) and feedback controllers are developed for real time vortex control. The POD method is one of the most well known techniques for modeling low order models that represent the original full-order model. An adaptive control algorithm is used for real time control.

Mode Decomposition of Three-Dimensional Mixed-Mode Cracks using the Solution for Penny-Shaped Crack

  • Kim, Young-Jong;Cho, Duk-Sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.11-18
    • /
    • 2001
  • A simple and convenient method of analysis for obtaining the individual stress intensity factors in a three-dimensional mixed mode crack is proposed. The procedures presented here are based on the path independence of J integral and mutual or two-state conservation integral, which involves two elastic fields. The problem is reduced to the determination of mixed mode stress intensity factor solutions in terms of conservation integrals involving known auxiliary solutions. Some numerical examples are presented to investigate the effectiveness and applicability of the method for a three-dimensional penny-shaped crack problem under mixed mode. This procedure is applicable to a three-dimensional mixed mode curved crack.

  • PDF

Nonlinear Modeling of Dynamic AFM Using Proper Orthogonal Modes (적합직교모드를 이용한 동적모드 AFM 의 비선형 모델링)

  • Hong, Sang-Hyuk;Lee, Soo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.379-382
    • /
    • 2007
  • The proper orthogonal decomposition(POD) is used to the modal analysis of microcantilever of dynamic mode atomic force microscopy(AFM). The proper orthogonal modes(POM) are extracted from vibrating signals of microcantilever when it resonates and taps the sample. The POMs resemble the linear normal modes(LNM) of cantilever vibrating at each resonance frequency. Some of POMs in tapping microcantilever show quite different shapes from the POMs of the resonating microcantilever. Also this POMs can be applied to model for the complex nonlinear behavior of the dynamic mode AFM microcantilevers.

  • PDF

The Adsorption and Decomposition of NO on a Steped ppt(111) Surface

  • Lee, S.B.;Kang, C.Y.;Park, C.Y.;Kwak, H.T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.02a
    • /
    • pp.113-113
    • /
    • 1995
  • The adsorpption and decompposition of NO on a stepped ppt(111) surface have been studied using thermal desorpption sppectroscoppy and Auger electron sppectroscoppy. NO adsorbs molecularly in two different states of the terrace and the stepp, which are distinguishable in thermal desorpption sppectra. NO dissociates via a bent sppecies at the stepp sites on the basis of vibrational sppectrum data repported ppreviously. The dissociation of NO is activation pprocess : the activation energy is estimated to be about 2 kcal/mol. Increase in the NO dissociation with adsorpption tempperature is expplained by a pprocess controlled by different of the dissociated atomic nitrogen from the stepp to the terrace of the surface. In addition to No and N2, the desorpption ppeak of N2O is observed. We conclude that the formation of N2O is attributed to surface reaction of No and N adsorbed on the surface.

  • PDF

Dielectric properties of $Bi_{3.25}La_{0.75}Ti_3O_{12}$ thin films with Bi contents (Bi 첨가량에 따른 BLT 박막의 유전특성)

  • 김경태;김창일;강동희;심일운
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.371-374
    • /
    • 2002
  • Bismuth lanthanum titanate thin films with excess Bi contents were prepared onto Pt/Ti/$SiO_2$/Si substrate by metalorganic decomposition (MOD) technique. The structure and morphology of the films were analyzed using X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. From the XRD analysis, BLT thin films show polycrystalline structure and the layered-perovskite phase was obtained over 10% excess of Bi contents. As a result of ferroelectric characteristics related to the Bi content of the BLT thin film, the remanent polarization and dielectric constant decreased with increasing over Bi content of 10 % excess. The BLT film with Bi content of 10% excess was measured to have a dielectric constant of n9 and dielectric loss of 1.85[%]. The BLT thin films showed little polarization fatigue test up to 3.5 x $10^{9}$ bipolar switching cycling.

  • PDF