• Title/Summary/Keyword: atmospheric modeling (WRF)

Search Result 34, Processing Time 0.035 seconds

Impact of Different Meteorological Initializations on WRF Simulation During the KORUS-AQ Campaign (KORUS-AQ 기간 동안 초기 입력 자료에 따른 WRF 기상장 모의 결과 비교)

  • Mun, Jeonghyeok;Jeon, Wonbae;Lee, Hwa Woon
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.33-44
    • /
    • 2020
  • Recently, a variety of modeling studies have been conducted to examine the air quality over South Korea during the Korea - United States Air Quality (KORUS-AQ) campaign period (May 1 to June 10, 2016). This study investigates the impact of different meteorological initializations on atmospheric modeling results. We conduct several simulations during the KORUS-AQ period using the Weather Research and Forecasting (WRF) model with two different initial datasets, which is FNL of NCEP and ERA5 of ECMWF. Comparing the raw initial data, ERA5 showed better accuracy in the temperature, wind speed, and mixing ratio fields than those of NCEP-FNL. On the other hand, the results of WRF simulations with ERA5 showed better accuracy in the simulated temperature and mixing ratio than those with FNL, except for wind speed. Comparing the nudging efficiency of temperature and wind speed fields, the grid nudging effect on the FNL simulation was larger than that on the ERA5 simulation, but the results of mixing ratio field was the opposite. Overall, WRF simulation with ERA5 data showed a better performance for temperature and mixing ratio simulations than that with FNL data. For wind speed simulation, however, WRF simulation with FNL data indicated more accurate results compared to that with ERA5 data.

Sensibility Study for PBL Scheme of WRF-CMAQ (PBL Scheme에 대한 WRF-CMAQ 민감도 분석)

  • Moon, Nan-Kyoung;Kim, Soon-Tae;Seo, Ji-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.791-804
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of PBL (Planetary boundary layer) scheme implemented in WRF on the result of meteorological fields and CMAQ modeling. 25-day period, representing high ozone concentration, was selected for the simulations. The three WRF domains covered East Asia region, Korean Peninsula and Seoul metropolitan area. The sensitivity of WRF-CMAQ modeling to the various PBL schemes was assessed and quantified by comparing model output and against observation from the meteorological and the air quality monitoring network within the domain. The meteorological variables evaluated included temperature, wind speed and direction over surface sites and upper air sounding sites. The CMAQ variables included gaseous species $O_3$ and $NO_x$ over monitoring stations. Although difference of PBL schemes implemented in WRF, they did not appreciably affect the WRF and CMAQ performance. There are partially differences between non-local and local mixing scheme, but are not distinct differences for the results of weather and air quality. It is suggested that impact of parameterization of vertical eddy diffusivity scheme in CMAQ also need to be researched in the future study.

Building Baseline Data for a Typhoon Protection System via Calculation of the Extreme Wind Speed During a Typhoon (태풍 내습 시 발생 가능한 최대 풍속 산정을 통한 태풍의 사전 방재 시스템 기초 자료 구축)

  • Na, Hana;Park, Jong-Kil;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.203-217
    • /
    • 2018
  • For this study, WRF numerical modeling was performed, using RDAPS information for input data on typhoons affecting the Korean peninsula to produce wind data of 700hPa. RAM numerical modeling was also used to calculate 3-second gusts as the extreme wind speed. After comparing wind speeds at an altitude of 10 m to evaluate the feasibility of WRF numerical modeling, modeled values were found to be similar with measured ones, reflecting change tendencies well. Therefore, the WRF numerical modeling results were verified. As a result of comparing and analyzing these wind speeds, as calculated through RAM numerical modeling, to evaluate applicability for disaster preparedness, change tendencies were observed to be similar between modeled and measured values. In particular, modeled values were slightly higher than measured ones, indicating applicability for the prevention of possible damage due to gales. Our analysis of 3-second gusts during the study period showed a high distribution of 3-second gusts in the southeast region of the Korean peninsula from 2002-2006. The frequency of 3-second gusts increased in the central north region of Korea as time progressed. Our analysis on the characteristics of 3-second gusts during years characterized by El $Ni{\tilde{n}}o$ or La Nina showed greater strength during hurricanes that affected the Korean peninsula in El $Ni{\tilde{n}}o$ years.

Impact of Meteorological Initial Input Data on WRF Simulation - Comparison of ERA-Interim and FNL Data (초기 입력 자료에 따른 WRF 기상장 모의 결과 차이 - ERA-Interim과 FNL자료의 비교)

  • Mun, Jeonghyeok;Lee, Hwa Woon;Jeon, Wonbae;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1307-1319
    • /
    • 2017
  • In this study, we investigated the impact of different initial data on atmospheric modeling results using the Weather Research and Forecast (WRF) model. Four WRF simulations were conducted with different initialization in March 2015, which showed the highest monthly mean $PM_{10}$ concentration in the recent ten years (2006-2015). The results of WRF simulations using NCEP-FNL and ERA-Interim were compared with observed surface temperature and wind speed data, and the difference of grid nudging effect on WRF simulation between the two data were also analyzed. The FNL simulation showed better accuracy in the simulated temperature and wind speed than the Interim simulation, and the difference was clear in the coastal area. The grid nudging effect on the Interim simulation was larger than that of the FNL simulation. Despite of the higher spatial resolution of ERA-Interim data compared to NCEP-FNL data, the Interim simulation showed slightly worse accuracy than those of the FNL simulation. It was due to uncertainties associated with the Sea Surface Temperature (SST) field in the ERA-Interim data. The results from the Interim simulation with different SST data showed significantly improved accuracy than the standard Interim simulation. It means that the SST field in the ERA-Interim data need to be optimized for the better WRF simulation. In conclusion, although the WRF simulation with ERA-Interim data does not show reasonable accuracy compared to those with NCEP-FNL data, it would be able to be Improved by optimizing the SST variable.

Quantitative Analysis of Random Errors of the WRF-FLEXPART Model for Backward-in-time Simulation over the Seoul Metropolitan Area (수도권 영역의 시간 후방 모드 WRF-FLEXPART 모의를 위한 입자 수에 따른 무작위 오차의 정량 분석)

  • Woo, Ju-Wan;Lee, Jae-Hyeong;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.551-566
    • /
    • 2019
  • Quantitative understanding of a random error that is associated with Lagrangian particle dispersion modeling is a prerequisite for backward-in-time mode simulations. This study aims to quantify the random error of the WRF-FLEXPART model and suggest an optimum number of the Lagrangian particles for backward-in-time simulations over the Seoul metropolitan area. A series of backward-in-time simulations of the WRF-FLEXPART model has conducted at two receptor points by changing the number of Lagrangian particles and the relative error, as a quantitative indicator of random error, is analyzed to determine the optimum number of the release particles. The results show that in the Seoul metropolitan area a 1-day Lagrangian transport contributes 80~90% in residence time and ~100% in atmospheric enhancement of carbon monoxide. The relative errors in both the residence time and the atmospheric concentration enhancement are larger when the particles release in the daytime than in the nighttime, and in the inland area than in the coastal area. The sensitivity simulations reveal that the relative errors decrease with increasing the number of Lagrangian particles. The use of small number of Lagrangian particles caused significant random errors, which is attributed to the random number sampling process. For the particle number of 6000, the relative error in the atmospheric concentration enhancement is estimated as -6% ± 10% with reduction of computational time to 21% ± 7% on average. This study emphasizes the importance of quantitative analyses of the random errors in interpreting backward-in-time simulations of the WRF-FLEXPART model and in determining the number of Lagrangian particles as well.

WRF Modeling Approach for Improvement of Air Quality Modeling in the Seoul Metropolitan Region: Seasonal Sensitivity Analysis of the WRF Physics Options (수도권 대기질 모델링 정확도 향상을 위한 WRF모델링: 계절별 물리옵션 민감도 연구)

  • Jeong, Ju-Hee;Oh, Inbo;Kang, Yoon-Hee;Bang, Jin-Hee;An, Hyeyeon;Seok, Hyeon-Bae;Kim, Yoo-Keun;Hong, Jihyung;Kim, Jiyoung
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.67-83
    • /
    • 2016
  • In order to improve the prediction of the regional air quality modeling in the Seoul metropolitan area, a sensitivity analysis using two PBL and microphysics (MP) options of the WRF model was performed during four seasons. The results from four sets of the simulation experiments (EXPs) showed that meteorological variables (especially wind field) were highly sensitive to the choice of PBL options (YSU or MYJ) and no significant differences were found depending on MP options (WDM6 or Morrison) regardless of specific time periods, i.e. day and night, during four seasons. Consequently, the EXPs being composed of YSU PBL option were identified to produce better results for meteorological elements (especially wind field) regardless of seasons. On the other hand, the accuracy of all simulations for summer and winter was somewhat lower than those for spring and autumn and the effect according to physics options was highly volatile by geographical characteristics of the observation site.

Performance Evaluation of the High-Resolution WRF Meteorological Simulation over the Seoul Metropolitan Area (WRF 모형의 수도권 지역 상세 국지 기상장 모의 성능 평가)

  • Oh, Jun-Seo;Lee, Jae-Hyeong;Woo, Ju-Wan;Lee, Doo-Il;Lee, Sang-Hyun;Seo, Jihyun;Moon, Nankyoung
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.257-276
    • /
    • 2020
  • Faithful evaluation of the meteorological input is a prerequisite for a better understanding of air quality model performance. Despite the importance, the preliminary meteorological assessment has rarely been concerned. In this study, we aim to evaluate the performance of the Weather Research and Forecasting (WRF) model conducting a year-long high-resolution meteorological simulation in 2016 over the Seoul metropolitan area. The WRF model was configured based on a series of sensitivity simulations of initial/boundary meteorological conditions, land use mapping data, reanalysis grid nudging method, domain nesting method, and urban canopy model. The simulated results of winds, air temperature, and specific humidity in the atmospheric boundary layer (ABL) were evaluated following statistical evaluation guidance using the surface and upper meteorological measurements. The statistical evaluation results are presented. The model performance was interpreted acceptable for air quality modeling within the statistical criteria of complex conditions, showing consistent overestimation in wind speeds. Further statistical analysis showed that the meteorological model biases were highly systematic with systematic bias fractions (fSB) of 20~50%. This study suggests that both the momentum exchange process of the surface layer and the ABL entrainment process should be investigated for further improvement of the model performance.

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.