DOI QR코드

DOI QR Code

Quantitative Analysis of Random Errors of the WRF-FLEXPART Model for Backward-in-time Simulation over the Seoul Metropolitan Area

수도권 영역의 시간 후방 모드 WRF-FLEXPART 모의를 위한 입자 수에 따른 무작위 오차의 정량 분석

  • Woo, Ju-Wan (Department of Atmospheric Science, Kongju National University) ;
  • Lee, Jae-Hyeong (Department of Atmospheric Science, Kongju National University) ;
  • Lee, Sang-Hyun (Department of Atmospheric Science, Kongju National University)
  • 우주완 (공주대학교 자연과학대학 대기과학과) ;
  • 이재형 (공주대학교 자연과학대학 대기과학과) ;
  • 이상현 (공주대학교 자연과학대학 대기과학과)
  • Received : 2019.07.27
  • Accepted : 2019.09.23
  • Published : 2019.12.31

Abstract

Quantitative understanding of a random error that is associated with Lagrangian particle dispersion modeling is a prerequisite for backward-in-time mode simulations. This study aims to quantify the random error of the WRF-FLEXPART model and suggest an optimum number of the Lagrangian particles for backward-in-time simulations over the Seoul metropolitan area. A series of backward-in-time simulations of the WRF-FLEXPART model has conducted at two receptor points by changing the number of Lagrangian particles and the relative error, as a quantitative indicator of random error, is analyzed to determine the optimum number of the release particles. The results show that in the Seoul metropolitan area a 1-day Lagrangian transport contributes 80~90% in residence time and ~100% in atmospheric enhancement of carbon monoxide. The relative errors in both the residence time and the atmospheric concentration enhancement are larger when the particles release in the daytime than in the nighttime, and in the inland area than in the coastal area. The sensitivity simulations reveal that the relative errors decrease with increasing the number of Lagrangian particles. The use of small number of Lagrangian particles caused significant random errors, which is attributed to the random number sampling process. For the particle number of 6000, the relative error in the atmospheric concentration enhancement is estimated as -6% ± 10% with reduction of computational time to 21% ± 7% on average. This study emphasizes the importance of quantitative analyses of the random errors in interpreting backward-in-time simulations of the WRF-FLEXPART model and in determining the number of Lagrangian particles as well.

Keywords

References

  1. Brioude, J., and Coauthors, 2011: Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique. J. Geophys. Res. Atmos., 116, D20305, doi:10.1029/2011JD016215.
  2. Brioude, J., W. M. Angevine, S. A. McKeen, and E.-Y. Hsie, 2012: Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain. Geosci. Model Dev., 5, 1127-1136, doi:10.5194/gmd-5-1127-2012.
  3. Brioude, J., and Coauthors, 2013a: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, $NO_x$ and $CO_2$ and their impacts. Atmos. Chem. Phys., 13, 3661-3677, doi:10.5194/acp13-3661-2013.
  4. Brioude, J., and Coauthors, 2013b: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci. Model Dev., 6, 1889-1904, doi:10.5194/gmd-6-1889-2013.
  5. Carmichael, G. R., and Coauthors, 2002: The MICS-Asia study: model intercomparison of long-range transport and sulfur deposition in East Asia. Atmos. Environ., 36, 175-199. https://doi.org/10.1016/S1352-2310(01)00448-4
  6. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. PART I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
  7. Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 85 pp.
  8. Ding, A., T. Wang, and C. Fu, 2013: Transport characteristics and origins of carbon monoxide and ozone in Hong Kong, South China. J. Geophys. Res. Atmos., 118, 9475-9488, doi:10.1002/jgrd.50714.
  9. Fast, J. D., and R. C. Easter, 2006: A Lagrangian particle dispersion model compatible with WRF, 7th Annual WRF User's Workshop, Boulder, CO, USA, 5 pp.
  10. Folini, D., S. Ubl, and P. Kaufmann, 2008: Lagrangian particle dispersion modeling for the high Alpine site Jungfraujoch. J. Geophys. Res. Atmos., 113, D18111. https://doi.org/10.1029/2007JD009558
  11. Gerbig, C., J. C. Lin, S. C. Wofsy, B. C. Daube, A. E. Andrews, B. B. Stephens, P. S. Bakwin, and C. A. Grainger, 2003: Toward constraining regional-scale fluxes of $CO_2$ with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework. J. Geophys. Res. Atmos., 108, 4757, doi:10.1029/2003JD0037700.
  12. Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764-787. https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
  13. Hall, C. D., 1975: The simulation of particle motion in the atmosphere by a numerical random-walk model. Q. J. Roy. Meteor. Soc., 101, 235-244. https://doi.org/10.1002/qj.49710142807
  14. Henne, S., D. Brunner, B. Oney, M. Leuenberger, W. Eugster, I. Bamberger, F. Meinhardt, M. Steinbacher, and L. Emmenegger, 2016: Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling. Atmos. Chem. Phys., 16, 3683-3710, doi:10.5194/acp-16-3683-2016.
  15. Jeong, S., C. Zhao, A. E. Andrews, L. Bianco, J. M. Wilczak, and M. L. Fischer, 2012: Seasonal variation of $CH_4$ emissions from central California. J. Geophys. Res. Atmos., 117, D11306, doi:10.1029/2011JD016896.
  16. Kort, E. A., and Coauthors, 2008: Emissions of $CH_4$ and $N_2O$ over the United States and Canada based on a receptor-oriented modeling framework and COBRANA atmospheric observations. Geophys. Res. Lett., 35, L18808. https://doi.org/10.1029/2008GL034031
  17. Legg, B. J., and M. R. Raupach, 1982: Markov-chain simulation of particle dispersion in inhomogeneous flows: The mean drift velocity induced by a gradient in Eulerian velocity variance. Bound.-Layer Meteor., 24, 3-13. https://doi.org/10.1007/BF00121796
  18. Lin, J. C., and C. Gerbig, 2005: Accounting for the effect of transport errors on tracer inversions. Geophys. Res. Lett., 32, L01802. https://doi.org/10.1029/2004GL021127
  19. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
  20. McNider, R. T., M. D. Moran, and R. A. Pielke, 1988: Influence of diurnal and inertial boundary-layer oscillations on long-range dispersion. Atmos. Environ., 22, 2445-2462. https://doi.org/10.1016/0004-6981(88)90476-3
  21. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  22. Nakanishi, M., and H. Niino, 2006: An improved MellorYamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397-407. https://doi.org/10.1007/s10546-005-9030-8
  23. NIER, 2012: National air pollutants emission 2010. National Institute of Environmental Research, NIERGP2012-318, 243 pp (in Korean).
  24. Pielke, P. A., and M. Uliasz, 1998: Use of meteorological models as input to regional and mesoscale air quality models - limitations and strengths. Atmos. Environ., 32, 1455-1466. https://doi.org/10.1016/S1352-2310(97)00140-4
  25. Reid, J. D., 1979: Markov chain simulations of vertical dispersion in the neutral surface layer for surface and elevated releases. Bound.-Layer Meteor., 16, 3-22. https://doi.org/10.1007/bf03335351
  26. Seibert, P., and A. Frank, 2004: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos. Chem. Phys., 4, 51-63. https://doi.org/10.5194/acp-4-51-2004
  27. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note, NCAR/TN-475+STR, 113 pp.
  28. Stohl, A., 1998: Computation, accuracy and applications of trajectories-a review and bibliography. Atmos. Environ., 32, 947-966. https://doi.org/10.1016/S1352-2310(97)00457-3
  29. Stohl, A., and D. J. Thomson, 1999: A density correction for Lagrangian particle dispersion models. Bound.-Layer Meteor., 90, 155-167. https://doi.org/10.1023/A:1001741110696
  30. Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 2461-2474. https://doi.org/10.5194/acp-5-2461-2005
  31. Thompson, R., 1971: Numeric calculation of turbulent diffusion. Q. J. R. Meteorol. Soc., 97, 93-98. https://doi.org/10.1002/qj.49709741109
  32. Thompson, R. L., and A. Stohl, 2014: FLEXINVERT: an atmospheric Bayesian inversion framework for determining surface fluxes of trace species using an optimized grid. Geosci. Model Dev., 7, 2223-2242, doi: 10.5194/gmd-7-2223-2014.
  33. Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529-556. https://doi.org/10.1017/S0022112087001940
  34. Wen, D., J. C. Lin, D. B. Millet, A. F. Stein, and R. R. Draxler, 2012: A backward-time stochastic Lagrangian air quality model. Atmos. Environ., 54, 373-386, doi:10.1016/j.atmosenv.2012.02.042.
  35. Zannetti, P., 1990: Air pollution modeling: theories, computational methods and available software, Springer US, 444 pp.
  36. Zhao, C., A. E. Andrews, L. Bianco, J. Eluszkiewicz, A. Hirsch, C. MacDonald, T. Nehrkorn, and M. L. Fischer, 2009: Atmospheric inverse estimates of methane emissions from Central California. J. Geophys. Res. Atmos., 114, D16302. https://doi.org/10.1029/2008JD011671