DOI QR코드

DOI QR Code

Impact of Different Meteorological Initializations on WRF Simulation During the KORUS-AQ Campaign

KORUS-AQ 기간 동안 초기 입력 자료에 따른 WRF 기상장 모의 결과 비교

  • Mun, Jeonghyeok (Division of Earth Environmental System, Pusan National University) ;
  • Jeon, Wonbae (Department of Atmospheric Sciences, Pusan National University) ;
  • Lee, Hwa Woon (Department of Atmospheric Sciences, Pusan National University)
  • 문정혁 (부산대학교 지구환경시스템학부) ;
  • 전원배 (부산대학교 대기환경과학과) ;
  • 이화운 (부산대학교 대기환경과학과)
  • Received : 2019.10.21
  • Accepted : 2020.01.13
  • Published : 2020.01.31

Abstract

Recently, a variety of modeling studies have been conducted to examine the air quality over South Korea during the Korea - United States Air Quality (KORUS-AQ) campaign period (May 1 to June 10, 2016). This study investigates the impact of different meteorological initializations on atmospheric modeling results. We conduct several simulations during the KORUS-AQ period using the Weather Research and Forecasting (WRF) model with two different initial datasets, which is FNL of NCEP and ERA5 of ECMWF. Comparing the raw initial data, ERA5 showed better accuracy in the temperature, wind speed, and mixing ratio fields than those of NCEP-FNL. On the other hand, the results of WRF simulations with ERA5 showed better accuracy in the simulated temperature and mixing ratio than those with FNL, except for wind speed. Comparing the nudging efficiency of temperature and wind speed fields, the grid nudging effect on the FNL simulation was larger than that on the ERA5 simulation, but the results of mixing ratio field was the opposite. Overall, WRF simulation with ERA5 data showed a better performance for temperature and mixing ratio simulations than that with FNL data. For wind speed simulation, however, WRF simulation with FNL data indicated more accurate results compared to that with ERA5 data.

Keywords

References

  1. Choi, J. W., Lee, J. G., 2015, A Sensitivity study of WRF model simulations to nudging methods for a Yeongdong heavy snowfall event, Atmosphere, 25(1), 99-115. https://doi.org/10.14191/Atmos.2015.25.1.099
  2. Choi, W., Lee, J. G., Kim, Y. J., 2013, The impact of data assimilatioin on WRF simulation using surface data and radar data: case study, Atmosphere, 23(2), 143-160. https://doi.org/10.14191/Atmos.2013.23.2.143
  3. Dudhia, J., 1989, Numerical study of convection observed during winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  4. Ha, M., Lee, T., Lee, I. H., Jeon, E. C., 2017, Analysis about CO Diffusion Change Caused by Climate Change Using CALPUFF, J. Climate Change Res., 8(2), 81-89. https://doi.org/10.15531/ksccr.2017.8.2.81
  5. Hersbach, H., Dee, D., 2016, ERA5 reanalysis is in production, ECMWF Newsletter, 147, 7, available at: https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production(last access: 14 November 2018).
  6. Hong, S. Y., Dudhia, J., Chen, S. H., 2004, A Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Weather Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  7. Hong, S. Y., Noh, Y., Dudhia, J., 2006, A New vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev. 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  8. Huang, M., Diskin, J. H. G. S., Santanello, J. A., Kumar, S. V., Pusede, S. E., Parrington, M., Charmichael, G. R., 2018, Modeling regional pollution transport events during KORUS-AQ: Progress and challenges in improving representation of land -atmosphere feedbacks, J. Geophys. Res. Atmos., 123, 732-756. https://doi.org/10.1002/2017JB014709
  9. Jeon, W., Choi, Y., Lee, H. W., Lee, S. H., Yoo, J. W., Park, J., Lee, H. J., 2015, A quantitative analysis of grid nudging effect on each process of PM2.5 production in the Korean Peninsula, Atmos. Environ., 122, 763-774. https://doi.org/10.1016/j.atmosenv.2015.10.050
  10. Jeon, W. B., Lee, H. W., Lee, S. H., Choi, H. J., Kim, D. H., Park, S. Y., 2011, Numerical study on the impact of meteorological input data on air quality modeling on high ozone episode at coastal region, J. Korean Soc. Atmos. Environ., 27(1), 30-40. https://doi.org/10.5572/KOSAE.2011.27.1.030
  11. Jeong, J. H., Oh, I., Kang, Y. H., Bang, J. H., An, H., Seok, H. B., Kim, Y. K., Hong, J., Kim, J., 2016, WRF modeling approach for improvement of air quality modeling in the Seoul metropolitan region: seasonal sensitivity analysis of the WRF physics options, J. Environ. Sci., 25(1), 67-83.
  12. Jo, Y. J., Lee, H. J., Chang, L. S., Kim, C. H., 2017, Sensitivity study of the initial meteorological fields on the PM10 concentration predictions using CMAQ modeling, J. Korean Soc. Atmos. Environ., 33(6), 554-569. https://doi.org/10.5572/KOSAE.2017.33.6.554
  13. Kain, J. S., 2004, The Kain‐Fritsch convective parameterization: An update, J. Appl. Meteorol., 43, 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  14. Kim, J. A., Jin, H. A., Kim, C. H., 2007, Characteristics of time variations of PM10 concentrations in Busan and interpreting its generation mechanism using meteorological variables, J. Environ. Sci., 16(10), 1157-1167.
  15. Kim, T., Jeong, J. H., Kim, Y. K., 2016, Sensitivity analysis of the WRF model according to the impact of nudging for improvement of ozone prediction, J. Environ. Sci. Int., 25(5), 683-694. https://doi.org/10.5322/JESI.2016.25.5.683
  16. Lee, H. W., Jung, W. S., Kim, H. G., Lee, S. H., 2004, A Study of atmospheric field around the Pohang for dispersion analysis of air pollutants, J. Korean Soc. Atmos. Environ., 20(1), 1-15.
  17. Lee, H. W., Kim, M. J., Kim, D. H., Kim, H. G., Lee, S. H., 2009, Investigation of the Assimilated Surface Wind Characteristics for the Evaluation of Wind Resources, J. Korean Soc. Atmos. Environ., 25(1), 1-14. https://doi.org/10.5572/KOSAE.2009.25.1.001
  18. Lennartson, E. M., Wang, J., Gu, J., Castro Garcia, L., Ge, C., Gao, M., Choi, M., Saide, P. E., Carmichael, G. R., Kim, J., Janz, S. J., 2018, Diurnal variation of aerosol optical depth and $PM_{2.5}$ in South Korea: a synthesis from AERONET, satellite (GOCI), KORUS -AQ observation, and the WRF-Chem model, Atmos. Chem. Phys., 18, 15125-15144. https://doi.org/10.5194/acp-18-15125-2018
  19. Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., Zhai, P., 2017, Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmos. Chem. Phys., 17, 3097-3110. https://doi.org/10.5194/acp-17-3097-2017
  20. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., Clough, S. A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, JGR, 102, 16663-16682. https://doi.org/10.1029/97JD00237
  21. Mooney, P. A., Mulligan, F. J., Fealy, R., 2011, Comparison of ERA-40, ERA-Interim and NCEP/ NCAR reanalysis data with observed surface air temperatures over Ireland, Int. J. Climatol., 31(4), 545-557. https://doi.org/10.1002/joc.2098
  22. Mun, J., Lee, H. W., Jeon, W., Lee, S. H., 2017, impact of meteorological initial input data on WRF simulation - comparison of ERA-Interim and FNL data, J. Environ. Sci., 26(12), 1307-1319.
  23. National Institute of Environmental Research (NIER), 2013, A Study on Improvement and Expansion of Urban Scale PM Forecasting System (IV), 5-13.
  24. Rasmussen, D. J., Fiore, A. M., Naik, V., Horowitz, L. W., McGinnis, S. J., Schultz, M. G., 2011, Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models, Atmos. Environ., 47, 142-153. https://doi.org/10.1016/j.atmosenv.2011.11.021
  25. Ryu, C. M., Cho, I. H., 2010, Sensitivity analysis of KWRF model using analysis nudging method in relate to forecasting precipitation, Proceedings of the 2010 Autumn Meeting of Korean Meteorological Society, 246-247 (in Korean).
  26. Seibert, P., Beyrich, F., Gryning, S. E., Joffre, S., Rasmussen, A., Tercier, P., 2000, Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001-1027. https://doi.org/10.1016/S1352-2310(99)00349-0
  27. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X., Wang, W., Powers, J. G., 2008, A Description of the advanced research WRF version 3, NCAR Tech. Note NCAR/TN-475+STR, National Center for Atmospheric Research, Boulder, CO, 125.