• Title/Summary/Keyword: atmospheric humidity correction

Search Result 9, Processing Time 0.018 seconds

Detection of Artificial Displacement of a Reflector by using GB-SAR Interferometry and Atmospheric Humidity Correction (GB-SAR 간섭기법을 이용한 반사체의 인위적 변위탐지 및 대기습도보정)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hun;Kim, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.123-131
    • /
    • 2010
  • In this paper we applied Ground-Based Synthetic Aperture Radar(GB-SAR) interferometry to detect artificial displacement of a reflector and performed an atmospheric humidity correction to improve the accuracy. A series of GB-SAR images were obtained using a center frequency of 5.3 GHz with a range resolution of 25 cm and a azimuth resolution of $0.324^{\circ}$, all in full-polarization (HH, VV, VH, HV) modes. A triangular trihedral corner reflector was located 160 m away from the system, and the artificial displacements of 0-40 mm was implemented during the GB-SAR image acquisition. The result showed that the RMS error between the actual and measured displacements, averaged in all polarization data, was 1.22 mm, while the maximum error in case of the 40 mm displacement was 2.72 mm at HH-polarization. After the atmospheric correction with respect to the humidity, the RMS error was reduced to 0.52 mm. We conclude that a GB-SAR system can be used to monitor the possible displacement of artificial/natural scatterers and the stability assessment with sub-millimeter accuracy.

Assessment of Atmospheric Greenhouse Gas Concentration Equipment Performance (대기 중 온실가스 농도 관측 장비 성능 비교 검증)

  • Chaerin Park;Sujong Jeong;Seung-Hyun Jeong;Jeong-il Lee;Insun Kim;Cheol-Soo Lim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.549-560
    • /
    • 2023
  • This study evaluates three distinct observation methods, CRDS, OA-ICOS, and OF-CEAS, in greenhouse gas monitoring equipment for atmospheric CO2 and CH4 concentrations. The assessment encompasses fundamental performance, high-concentration measurement accuracy, calibration methods, and the impact of atmospheric humidity on measurement accuracy. Results indicate that within a range of approximately 500 ppm, all three devices demonstrate high accuracy and linearity. However, beyond 1000 ppm, CO2 accuracy sharply declines (84%), emphasizing the need for caution when interpreting high-concentration CO2 data. An analysis of calibration methods reveals that both CO2 and CH4 measurements achieve high accuracy and linearity through 1-point calibration, suggesting that multi-point calibration is not imperative for precision. In dynamic atmospheric conditions with significant CO2 and CH4 concentration variations, a 1-point calibration suffices for reliable data (99% accuracy). The evaluation of humidity impact demonstrates that humidity removal devices significantly reduce air moisture levels, yet this has a negligible effect on dry CO2 concentrations (less than 0.5% relative error). All three observation method instruments, which have integrated humidity correction to calculate dry CO2 concentrations, exhibit minor sensitivity to humidity removal devices, implying that additional removal devices may not be essential. Consequently, this study offers valuable insights for comparing data from different measurement devices and provides crucial information to consider in the operation of monitoring sites.

Atmospheric Correction of Arc-Rail Type GB-SAR Using Refractive Index of Air (대기 굴절률을 이용한 원형레일 기반 지상 SAR 자료의 대기보정)

  • Lee, Jae-Hee;Kim, Kwang-Eun;Cho, Seong-Jun;Sung, Nak-Hoon;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.237-243
    • /
    • 2012
  • In this paper, an atmospheric effect of repetitive measurements of X-band (9.65 GHz) arc-rail type GB-SAR (ArcSAR) system was quantitatively analyzed. Four artificial triangular trihedral corner reflectors as stationary targets for getting stable back scattered signal during 43 hours continually. The results of the analysis showed that the phase of those stationary targets had changed maximum of 5 radian (12.4 mm) and total RMS error had was 1.62 radian (4 mm) during 65 repeated measuring time. The refractive index of air which was calculated using the temperature;humidity and pressure of atmosphere showed very close relationship with the phase difference. We could check the atmospheric correction was fulfilled by the correction of an atmospheric effect using refractive index during the selected 16 hours period showed that RMS error was dropped from 1.74 radian (4.3 mm) to 0.10 radian (0.24 mm).

A Study on Development of Small Sensor Observation System Based on IoT Using Drone (드론을 활용한 IoT기반의 소형센서 관측시스템 개발 가능성에 대한 소고)

  • Ahn, Yoseop;Moon, Jongsub;Kim, Baek-Jo;Lee, Woo-Kyun;Cha, Sungeun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1155-1167
    • /
    • 2018
  • We developed a small sensor observation system (SSOS) at a relatively low cost to observe the atmospheric boundary layer. The accuracy of the SSOS sensor was compared with that of the automatic weather system (AWS) and meteorological tower at the Korea Meteorological Administration (KMA). Comparisons between SSOS sensors and KMA sensors were carried out by dividing into ground and lower atmosphere. As a result of comparing the raw data of the SSOS sensor with the raw data of AWS and the observation tower by applying the root-mean-square-error to the error, the corresponding values were within the error tolerance range (KMA meteorological reference point: humidity ${\pm}5%$, atmospheric pressure ${\pm}0.5hPa$, temperature ${\pm}0.5^{\circ}C$. In the case of humidity, even if the altitude changed, it tends to be underestimated. In the case of temperature, when the altitude rose to 40 m above the ground, the value changed from underestimation to overestimation. However, it can be confirmed that the errors are within the KMA's permissible range after correction.

Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD (GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석)

  • Kim, Sang-Min;Yoon, Jongmin;Moon, Kyung-Jung;Kim, Deok-Rae;Koo, Ja-Ho;Choi, Myungje;Kim, Kwang Nyun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.451-463
    • /
    • 2018
  • The empirical/statistical models to estimate the ground Particulate Matter ($PM_{2.5}$) concentration from Geostationary Ocean Color Imager (GOCI) Aerosol Optical Depth (AOD) product were developed and analyzed for the period of 2015 in Seoul, South Korea. In the model construction of AOD-$PM_{2.5}$, two vertical correction methods using the planetary boundary layer height and the vertical ratio of aerosol, and humidity correction method using the hygroscopic growth factor were applied to respective models. The vertical correction for AOD and humidity correction for $PM_{2.5}$ concentration played an important role in improving accuracy of overall estimation. The multiple linear regression (MLR) models with additional meteorological factors (wind speed, visibility, and air temperature) affecting AOD and $PM_{2.5}$ relationships were constructed for the whole year and each season. As a result, determination coefficients of MLR models were significantly increased, compared to those of empirical models. In this study, we analyzed the seasonal, monthly and diurnal characteristics of AOD-$PM_{2.5}$model. when the MLR model is seasonally constructed, underestimation tendency in high $PM_{2.5}$ cases for the whole year were improved. The monthly and diurnal patterns of observed $PM_{2.5}$ and estimated $PM_{2.5}$ were similar. The results of this study, which estimates surface $PM_{2.5}$ concentration using geostationary satellite AOD, are expected to be applicable to the future GK-2A and GK-2B.

Preprocessing of the Direct-broadcast Data from the Atmospheric Infared Sounder (AIRS) Sounding Suite on Aqua Satellite

  • Kim, Seungbum;Park, Hyesook;Kim, Kumlan;Park, Seunghwan;Kim, Moongyu;Lee, Jongju
    • Atmosphere
    • /
    • v.13 no.4
    • /
    • pp.71-79
    • /
    • 2003
  • We present a pre processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy [s1]of a radiosonde (1 K in 1-km layer for temperature and 10% in 2-km layer for humidity). The core of the pre p rocessor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction to compute the Earth's radiance. Then we remove spurious data and retrieve the brightness temperature (Tb). Since we process the direct-broadcast data almost for the first time among the AIRS directbroadcast community, special attention is needed to understand and verify the products. This includes the pixel-to-pixel verification of the direct-broadcast product with reference to the fullorbit product, which shows the difference of less than $10^{-3}$ K in IR Tb.

Development of Processing System of the Direct-broadcast Data from the Atmospheric Infrared Sounder (AIRS) on Aqua Satellite

  • Lee Jeongsoon;Kim Moongyu;Lee Chol;Yang Minsil;Park Jeonghyun;Park Jongseo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.371-382
    • /
    • 2005
  • We present a processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy of radiosonde (1 K in 1-km layer for temperature and $10\%$ in 2-km layer for humidity). The core of the processor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction for generation of Level 1 brightness temperature and Level 2 geophysical parameters retrieval. The processor can produce automatically from received raw data to Level 2 geophysical parameters. As we process the direct-broadcast data almost for the first time among the AIRS direct-broadcast community, a special attention is paid to understand and verify the Level 2 products. This processor includes sub-systems, that is, the near real time validation system which made the comparison results with in-situ measurement data, and standard digital information system which carry out the data format conversion into GRIdded Binary II (GRIB II) standard format to promote active data communication between meteorological societies. This processing system is planned to encourage the application of geophysical parameters observed by AIRS to research the aqua cycle in the Korean peninsula.

On-Machine Measurement of an Optical Surface by Hartmann Test (하트만 방법에 의한 광학면의 기상측정)

  • 김용관;오창진;이응석;김옥현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.474-480
    • /
    • 2002
  • Aspheric optical lenses and mirrors are widely used in recent. It is more difficult to manufacture and measure the aspherical optics compared to conventional spherical ones. The interferometric optical test is common for the measurement of spherical optical surface. But the application of the interferometry to the measurement of aspheric surface is difficult because it needs a precise null corrector and very careful environmental conditions such as keeping constant temperature, humidity, atmospheric pressure and vibrations. To enhance productivity of optics manufacturing on-machine measurement and correction has been developed in this study. For practical applications, robustness of the measurement method to environments is more important. For the purpose an optical OMM(On-Machine Measurement) system has been developed using Shack-Hartmann test which has robustness to the environment. The wavefront has been reconstructed from the measured data using the primary aberration polynomial function by least square fitting. The measured result of the developed only system gives the maximum deviation only in 200 nm from the result measured by a commercial Fizeau interferometer Wyko 6000.

  • PDF

Extraction of Sea Surface Temperature in Coastal Area Using Ground-Based Thermal Infrared Sensor On-Boarded to Aircraft (지상용 열적외선 센서의 항공기 탑재를 통한 연안 해수표층온도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin;Kim, Seung Hee;Cho, Yang-Ki;Lee, Sang-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.797-807
    • /
    • 2014
  • The Sea Surface Temperature (SST) is one of the most important oceanic environmental factors in determining the change of marine environments and ecological activities. Satellite thermal infrared images can be effective for understanding the global trend of sea surface temperature due to large scale. However, their low spatial resolution caused some limitations in some areas where complicated and refined coastal shapes due to many islands are present as in the Korean Peninsula. The coastal ocean is also very important because human activities interact with the environmental change of coastal area and most aqua farming is distributed in the coastal ocean. Thus, low-cost airborne thermal infrared remote sensing with high resolution capability is considered for verifying its possibility to extract SST and to monitor the changes of coastal environment. In this study, an airborne thermal infrared system was implemented using a low-cost and ground-based thermal infrared camera (FLIR), and more than 8 airborne acquisitions were carried out in the western coast of the Korean Peninsula during the periods between May 23, 2012 and December 7, 2013. The acquired thermal infrared images were radiometrically calibrated using an atmospheric radiative transfer model with a support from a temperature-humidity sensor, and geometrically calibrated using GPS and IMU sensors. In particular, the airborne sea surface temperature acquired in June 25, 2013 was compared and verified with satellite SST as well as ship-borne thermal infrared and in-situ SST data. As a result, the airborne thermal infrared sensor extracted SST with an accuracy of $1^{\circ}C$.