• Title/Summary/Keyword: atmosphere air plasma

Search Result 29, Processing Time 0.023 seconds

Disinfective Properties and Ozone Concentrations in Water and Air from an Ozone Generator and a Low-temperature Dielectric Barrier Discharge Plasma Generator (오존발생기와 저온 유전체장벽 플라즈마를 이용한 오존 발생 및 살균력)

  • Lee, Young Sik;Jeon, Hyoung-Joo;Han, Hyung-Gyun;Cheong, Cheong-Jo
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.937-944
    • /
    • 2013
  • Ozone concentrations in water and air, and resulting disinfective properties, were measured following generation by either an ozone generator or a low-temperature dielectric barrier discharge plasma generator. In freshwater, ozone concentrations of 0.81 and 0.48 mg/L $O_3$ were observed after the ozone and plasma generators had been operated for five minutes, respectively. Higher levels of dissolved $O_3$ were attained more easily with the ozone generator. In seawater, both systems were capable of creating concentrations greater than 3.00 mg/L $O_3$ after 5minutes of operation. Higher ozone levels were attained more easily in seawater than in freshwater. Rates of bacterial sterilization in seawater after three minutes were 96% and 88%, using the plasma and ozone generators, respectively. In freshwater, higher concentrations of ozone were released into the atmosphere by the ozone generator than by the plasma generator. In creating equivalent levels of dissolved ozone in freshwater, the plasma generator released 4.5 times more ozone into the atmosphere than did the ozone generator. This shows that ozone generators are more effective than plasma generators for creating ozonated water. For the same concentration of dissolved ozone in seawater, more ozone was released into the atmosphere using the ozone generator than using the plasma generator. Therefore, with regard to air pollution, plasma generators seem to be less expensive than ozone generators.

Spectral Analyses of Plasma Induced by Laser Welding of Aluminum Alloys (알루미늄 합금의 레이저 용접시 유기하는 플라즈마의 스펙트럼 분석)

  • 김종도;최영국;김영식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.292-300
    • /
    • 2001
  • The paper describes spectroscopic characteristics of plasma induces in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg lines, as well as the intense molecular spectra of A10 and Mg0 formed by chemical reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere, Mg0 and AI0 spectra vanished, but AIH spectrum was detected. The hydrogen source was presumably hydrogen dissolved in the base metals, water absorbed on the surface oxide layer, or $H_2$ and $H_2O$ in the shielding gas. The resonant 1ines of Al and Mg were strongly self-absorbed, in particular, self-absorption of the Mg 1ine was predominant. These results show that the laser induced plasma was made of metal1ic vapor with relatively low temperature and high density.

  • PDF

Spectral Line Identification and Emission Characteristics of the Laser-Induced Plasma in Pulsed Nd:YAG Laser Welding (펄스 YAG 레이저 용접시 유기하는 플라즈마의 스펙트럼선 동정과 발광특성)

  • 김종도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.360-368
    • /
    • 1999
  • The paper describes spectroscopic characteristics of plasma induced in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn and singly ionized Mg lines as well as the intense molecular spectra of ALO and MgO formed by chemi-cal reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere MgO and AlO spectra vanished but AlH spectrum was detected. the hydrogen source was presumable hydrogen dissolved in the base metals water absorbed on the surface oxide layer or $H_2$ and $H_2O$ in the shielding gas. The resonant lines of Al and Mg were strongly self-absorbed in particular self-absorption of the Mg line was predominant. These results show that the laser induced plasma was made of metallic vapor with relatively low temperature and high density.

  • PDF

Influence of milling atmosphere on thermoelectric properties of p-type Bi-Sb-Te based alloys by mechanical alloying

  • Yoon, Suk-min;Nagarjuna, Cheenepalli;Shin, Dong-won;Lee, Chul-hee;Madavali, Babu;Hong, Soon-jik;Lee, Kap-ho
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.357-363
    • /
    • 2017
  • In this study, Bi-Sb-Te thermoelectric materials are produced by mechanical alloying (MA) and spark plasma sintering (SPS). To examine the influence of the milling atmosphere on the microstructure and thermo-electric (TE) properties, a p-type Bi-Sb-Te composite powder is mechanically alloyed in the presence of argon and air atmospheres. The oxygen content increases to 55% when the powder is milled in the air atmosphere, compared with argon. All grains are similar in size and uniformly, distributed in both atmospheric sintered samples. The Seebeck coefficient is higher, while the electrical conductivity is lower in the MA (Air) sample due to a low carrier concentration compared to the MA (Ar) sintered sample. The maximum figure of merit (ZT) is 0.91 and 0.82 at 350 K for the MA (Ar) and MA (Air) sintered samples, respectively. The slight enhancement in the ZT value is due to the decrease in the oxygen content during the MA (Ar) process. Moreover, the combination of mechanical alloying and SPS process shows a higher hardness and density values for the sintered samples.

The development of the discharge reactor for water purification and a spectroscopic study on its discharge emission (수처리용 방전 리액터의 개발과 방전 발광의 분광학적 분석 연구)

  • Han, Sang-Bo;Park, Jae-Youn;Kim, Jong-Seog;Jung, Jang-Gun;Koh, Hee-Seog;Park, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.581-582
    • /
    • 2005
  • In order to apply the discharge plasma processing. to industrial areas, the control of the chemical reaction mechanism is necessary. The hybrid plasma reactor was designed for the effective treatment of wastewater and hazardous volatile organic substances. This plasma reactor was similar to the barrier discharge, and surface discharge on the dielectric surface was propagated to the water surface strongly for the heterogeneous chemical reaction at the interface between the working gas and the water surface. The discharge emission in this discharge reactor was mainly $N_2$ second positive band in the case of $N_2$ or air gas atmosphere, and intensities from OH radicals in Ar gas atmosphere were stronger than in $N_2$ or air gas atmosphere. From this result, it is necessary to apply Ar gas for the effective generation of OH radicals in this plasma reactor.

  • PDF

Oxidation Resistance of SPS (Spark Plasma Sintering) Sintered β-FeSi2Bodies at High Temperature (방전플라즈마 소결법으로 제작한 β-FeSi2 소결체의 고온 내산화성)

  • Chang, Se-Hun;Hong, Ji-Min;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.132-136
    • /
    • 2007
  • Oxidation resistance of sintered ${\beta}-FeSi_{2}$ was investigated at intermediate temperature range in air atmosphere. Fully dense and porous bodies of ${\beta}-FeSi_{2}$ samples were fabricated by using the Spark Plasma Sintering (SPS). They were annealed at $900^{\circ}C$ for 5days to obtain ${\beta}-FeSi_{2}$ phase. The bulk samples were oxidized at $800,\;900\;and\;950^{\circ}C$ in air atmosphere. The high temperature oxidation tests reveal that amorphous $SiO_{2}$ layer, similar to Si was formed and grew parabolically on ${\beta}-FeSi_{2}$. Accelerated oxidation is not observed as well as cracks and grain boundary oxidation. Granular ${\varepsilon}-FeSi$ was developed below the oxide layer as a result of oxidation of ${\beta}-FeSi_{2}$. Oxidation resistance of sintered ${\beta}-FeSi_{2}$ was excellent for high-temperature thermoelectric application.

Surface Modification Effect and Mechanical Property of para-aramid Fiber by Low-temperature Plasma Treatment (저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성(2))

  • Park, Sung-Min;Son, Hyun-Sik;Sim, Ji-Hyun;Kim, Joo-Young;Kim, Taekyeong;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.18-26
    • /
    • 2015
  • para-aramid fibers were treated by atmosphere air plasma to improve the interfacial adhesion. The wettability of plasma-treated aramid fiber was observed by means of dynamic contact angle surface free energy measurement. Surface roughness were investigated with the help of scanning electron microscopy and atomic force microscopy. The tensile test of aramid fiber roving was carried out to determine the effect of plasma surface treatments on the mechanical properties of the fibers. A pull-out force test was carried out to observe the interfacial adhesion effect with matrix material. It was found that surface modification and a chemical component ratio of the aramid fibers improved wettability and adhesion characterization. After oxygen plasma, it was indicated that modified the surface roughness of aramid fiber increased mechanical interlocking between the fiber surface and vinylester resin. Consequently the oxygen plasma treatment is able to improve fiber-matrix adhesion through excited functional group and etching effect on fiber surface.

Effect of Perovskite Surface Treatment Using Oxygen Atmospheric Pressure Plasma (산소분위기의 상압플라즈마를 이용한 페로브스카이트 표면 처리 효과)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.146-153
    • /
    • 2021
  • Recently, research on perovskite semiconductor materials has been performed, and the evaluation of properties using surface treatment for this material is the basis for subsequent studies. We studied the results of surface treatment of perovskite thin films exposed to air for about 6 months by generating oxygen plasma with an atmospheric pressure plasma equipment. The reason for exposure for 6 months is that the perovskite thin film is made of organic and inorganic substances, so when exposed to air, the surface changes through reaction with oxygen or water vapor. Therefore, this change is to investigate whether it is possible to restore the original film. The surface shape and the ratio of elements were analyzed by varying the process time from 1 s to 1200 s in an oxygen plasma atmosphere. It was found that the crystal grains change over a process time of 5 s or more. In order to maintain the properties of the deposited film, it is the optimal process condition between 2 s and 5 s.

Characteristics on the Breakdown and Frequency Spectrum of High Power Microwave Pulse Propagating through the Atmosphere (고출력 마이크로파 펄스의 대기권 전파시 방전 및 주파수 스펙트럼에 관한 특성)

  • Kim, Yeong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.591-597
    • /
    • 1999
  • The propagation characteristics of high power microwave pulse in an air-breakdown environment are examined. The maximum electron density produced by microwave air-breakdown is limited to $10^6cm^{-3}$ by the tail-erosion effect. Inorder to increase the electron density, the scheme using two pulses intersecting at a desired height is considered. Increasing the carrier frequency, it is shown that microwave pulse can be transferred without the serious erosion in the numerical simulation. This result is useful for the above scheme. Also, an experiment is conducted to show the tail-erosion effect and confirm that a rapidly generated lossy plasma can cause spectral breaking and frequency shift of a high-power microwave pulse. The experimental results are presented by comparing the frequency spectrum of an incident pulse with that of the pulse transmitted through a self-induced air-breakdown environment. The experimental results show that the amount of frequency upshift is co-related with the ionization rate, whereas that of frequency downshift is correlated with the energy losses from the pulse in the self-generated plasma.

  • PDF

Fabrication of the Functional Coatings of a Tubular Solid Oxide Fuel by Plasma Spray Processes. (플라즈마 용사법을 이용한 원통형 고체산화물 연료전지의 요소피막 제조)

  • 주원태;홍상희
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.5
    • /
    • pp.333-346
    • /
    • 1997
  • Plasma spray processes for functional coatings of tubular SOFC ( Soild oxide Fuel Cell).consisting of air electrode, oxide electrolyte, an fuel electrode, are optimized by fully saturated fractional factorial testing. Material and electric characteristics of each coating are analtsed by the implementation of SEM and optical microscope for evaluating microstructure and porosity, X-ray diffraction method for investigating compositional change between raw powder and sprayed coating, and Van der Pauw method for measuring electrical conductivity. LSM ($La_{0.65}Sr_{0.35}MnO_3$air electrode and Ni-YSL fuel electrode coatings have porosities of around 23~30% sufficient for effective fuel and oxidant gas supply to electrochemical reaction interfaces and electrical conductivities of around 90 S/cm and 1000 S/cm, respectively, enough for acting as current collecting electrodes. YSZ($ZrO_2-8mol%Y_2O_3$) electrolyte film has a high ionic conductivities of 0.05~0.07 S/cm at $1000^{\circ}C$ in air atmosphere, but appears to be somewhat too porous to reduce the thickness. for enhancing the cell efficiency. A unit tubular SOFC has beem fabricated by the optimized plasma spray processes for each functional coating and the cell. Its electrochemical chracteristics are investigated by measuring voltage-current and power density with variation of operationg temperature, radio of fuel to air gas flowrates, and total gas flowrate of reactants.

  • PDF