DOI QR코드

DOI QR Code

Effect of Perovskite Surface Treatment Using Oxygen Atmospheric Pressure Plasma

산소분위기의 상압플라즈마를 이용한 페로브스카이트 표면 처리 효과

  • Kim, Kyoung-Bo (Department of Metallurgical and Materials Engineering, Inha Technical College) ;
  • Lee, Jongpil (Department of Electrical and Electronic Engineering, Jungwon University) ;
  • Kim, Moojin (Department of IoT Electronic Engineering, Kangnam University)
  • 김경보 (인하공업전문대학 금속재료과) ;
  • 이종필 (중원대학교 전기전자공학과) ;
  • 김무진 (강남대학교 IoT전자공학과)
  • Received : 2021.05.07
  • Accepted : 2021.06.20
  • Published : 2021.06.28

Abstract

Recently, research on perovskite semiconductor materials has been performed, and the evaluation of properties using surface treatment for this material is the basis for subsequent studies. We studied the results of surface treatment of perovskite thin films exposed to air for about 6 months by generating oxygen plasma with an atmospheric pressure plasma equipment. The reason for exposure for 6 months is that the perovskite thin film is made of organic and inorganic substances, so when exposed to air, the surface changes through reaction with oxygen or water vapor. Therefore, this change is to investigate whether it is possible to restore the original film. The surface shape and the ratio of elements were analyzed by varying the process time from 1 s to 1200 s in an oxygen plasma atmosphere. It was found that the crystal grains change over a process time of 5 s or more. In order to maintain the properties of the deposited film, it is the optimal process condition between 2 s and 5 s.

최근 페로브스카이트 반도체 물질에 대한 연구가 이루어지고 있고, 이 물질에 대한 표면 처리를 이용한 특성 평가는 후속 연구들의 기반이 된다. 따라서, 본 논문에서는 상압분위기에서 플라즈마가 형성되는 상압플라즈마 장비로 산소 플라즈마를 생성하여 공기중에 약 6개월정도 노출시킨 페로브스카이트 박막을 표면 처리한 결과에 대해 연구하였다. 6개월간 노출시킨 이유는 페로브스카이트 박막은 유기물과 무기물로 이루어져 있기 때문에 공기 중에 노출되면, 산소나 수증기와의 반응을 통해 표면이 변화된다. 따라서, 이러한 변화를 원래 막으로의 복원이 가능한지 알아보기 위함이다. 산소플라즈마 분위기에서 1초부터 1200초까지 공정 시간을 변화시켜 가면서 표면 형상과 원소들 비율을 분석하였다. 이러한 결과는 페로브스카이트 막이 시간에 따라 변화가 일어나더라도 플라즈마 처리를 통해 이를 해결하는 방안을 제공한다.

Keywords

References

  1. A. N. Thiessen, M. Ha, R. W. Hooper, H. Yu, A. O. Oliynyk, J. G. C. Veinot & V. K. Michaelis (2019). Silicon Nanoparticles: Are They Crystalline from the Core to the Surface?. Chemistry of Materials, 31(3), 678-688. DOI : 10.1021/acs.chemmater.8b03074
  2. J. Talghader & J. S. Smith (1995). Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities. Applied Physics Letters, 66, 335-337. DOI : 10.1063/1.114204
  3. G. Scappucci, C. Kloeffel, F. A. Zwanenburg, D. Loss, M. Myronov, J.-J. Zhang, S. De Franceschi, G. Katsaros & M. Veldhorst (2020). The germanium quantum information route. Nature Reviews Materials. DOI : 10.1038/s41578-020-00262-z
  4. G. Signorello, E. Lortscher, P.A. Khomyakov, S. Karg, D.L. Dheeraj, B. Gotsmann, H. Weman & H. Riel (2014). Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nature Communications, 5, 3655. DOI : 10.1038/ncomms4655
  5. K. B. Kim, J. P. Lee & M. J. Kim (2020). Optical and electrical properties of AZO thin films deposited on OHP films. Journal of Convergence for Information Technology, 10(9), 28-34. DOI : 10.22156/CS4SMB.2020.10.09.028
  6. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano & H. Hosono (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432, 488-492. DOI : 10.1038/nature03090
  7. Hosono (2004). How we made the IGZO transistor. Nature Electronics, 1, 428. DOI : 10.1038/s41928-018-0106-0
  8. K. B. Kim, J. P. Lee & M. J. Kim (2021). Characteristics by deposition and heat treatment of Cr and Al thin film on stainless steel. Journal of Convergence for Information Technology, 11(3), 167-173. DOI : 10.22156/CS4SMB.2021.11.03.167
  9. K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min (2019). Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers. Journal of Convergence for Information Technology, 9(3), 75-81. DOI : 10.22156/CS4SMB.2019.9.3.075
  10. M. J. Kim (2021). Atmospheric Pressure Plasma Etching Technology for Forming Circular Holes in Perovskite Semiconductor Materials. Journal of Convergence for Information Technology, 11(2), 10-15. DOI : 10.22156/CS4SMB.2021.11.02.010
  11. H. P. Kim, M. J. Kim, K. B. Kim, H. Khachatryan & J. Jang (2017). Properties of atmospheric hydrogen-plasma-treated CH3NH3PbI3 perovskite films. Surface & Coatings Technology, 330, 228-233. DOI : 10.1016/j.surfcoat.2017.09.002
  12. H. Khachatryan, H. P. Kim, S. N. Lee, H. K. Kim, M. J. Kim, K. B. Kim & J. Jang (2018). Novel method for dry etching CH3NH3PbI3 perovskite films utilizing atmospheric-hydrogen -plasma. Materials Science in Semiconductor Processing, 75, 1-9. DOI : 10.1016/j.mssp.2017.11.019
  13. H. Khachatryan, Y. H. Kim, K. B. Kim, H. J. Yang & M. J. Kim (2019). Direct etching of perovskite film by electron-beam scanning. Materials Science in Semiconductor Processing, 90, 171-181. DOI : 10.1016/j.mssp.2018.10.022
  14. E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh & J. W. Seo (2019). Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511-515. DOI : 10.1038/s41586-019-1036-3
  15. G. Pacchioni (2021). Highly efficient perovskite LEDs. Nature Reviews Materials, 6, 108. DOI : 10.1038/s41578-021-00280-5