• Title/Summary/Keyword: asymptotic variance

Search Result 142, Processing Time 0.018 seconds

Families of Estimators of Finite Population Variance using a Random Non-Response in Survey Sampling

  • Singh, Housila P.;Tailor, Rajesh;Kim, Jong-Min;Singh, Sarjinder
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.681-695
    • /
    • 2012
  • In this paper, a family of estimators for the finite population variance investigated by Srivastava and Jhajj (1980) is studied under two different situations of random non-response considered by Tracy and Osahan (1994). Asymptotic expressions for the biases and mean squared errors of members of the proposed family are obtained; in addition, an asymptotic optimum estimator(AOE) is also identified. Estimators suggested by Singh and Joarder (1998) are shown to be members of the proposed family. A correction to the Singh and Joarder (1998) results is also presented.

INFERENCE AFTER STOCHASTIC REGRESSION IMPUTATION UNDER RESPONSE MODEL

  • Kim, Jae-Kwang;Kim, Yong-Dai
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.103-119
    • /
    • 2003
  • Properties of stochastic regression imputation are discussed under the uniform within-cell response model. Variance estimator is proposed and its asymptotic properties are discussed. A limited simulation is also presented.

Minimum Variance Unbiased Estimation for the Maximum Entropy of the Transformed Inverse Gaussian Random Variable by Y=X-1/2

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.657-667
    • /
    • 2006
  • The concept of entropy, introduced in communication theory by Shannon (1948) as a measure of uncertainty, is of prime interest in information-theoretic statistics. This paper considers the minimum variance unbiased estimation for the maximum entropy of the transformed inverse Gaussian random variable by $Y=X^{-1/2}$. The properties of the derived UMVU estimator is investigated.

GENERALIZING THE REFINED PICKANDS ESTIMATOR OF THE EXTREME VALUE INDEX

  • Yun, Seok-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.3
    • /
    • pp.339-351
    • /
    • 2004
  • In this paper we generalize and improve the refined Pickands estimator of Drees (1995) for the extreme value index. The finite-sample performance of the refined Pickands estimator is not good particularly when the sample size n is small. For each fixed k = 1,2,..., a new estimator is defined by a convex combination of k different generalized Pickands estimators and its asymptotic normality is established. Optimal weights defining the estimator are also determined to minimize the asymptotic variance of the estimator. Finally, letting k depend upon n, we see that the resulting estimator has a better finite-sample behavior as well as a better asymptotic efficiency than the refined Pickands estimator.

Statistical Estimation of Optimal Portfolios for non-Gaussian Dependent Returns of Assets

  • Taniguchi, Masanobu;Shiraishi, Hiroshi
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.55-58
    • /
    • 2005
  • This paper discusses the asymptotic efficiency of estimators for optimal portfolios when returns are vector-valued non-Gaussian stationary processes. We give the asymptotic distribution of portfolio estimators ${\hat{g}}$ for non-Gaussian dependent return processes. Next we address the problem of asymptotic efficiency for the class of estimators ${\hat{g}}$ First, it is shown that there are some cases when the asymptotic variance of ${\hat{g}}$ under non-Gaussianity can be smaller than that under Gaussianity. The result shows that non-Gaussianity of X(t) does not always affect worse. Second, we give a necessary and sufficient condition for ${\hat{g}}$ to be asymptotically efficient when the return process is Gaussian, which shows that ${\hat{g}}$ is not asymptotically efficient generally. From this point of view we propose to use maximum likelihood type estimators for g, which are asymptotically efficient. We examine our approach numerically.

  • PDF

Optimal design of partially step-stress life testing for the series systems (부분적 단계충격 수명검사에 관한 직렬형 시스템의 최적 검사계획)

  • 박희창;이석훈
    • The Korean Journal of Applied Statistics
    • /
    • v.8 no.2
    • /
    • pp.121-132
    • /
    • 1995
  • In this paper we consider optimal designs of partially step-stress life testing which is deviced for k-component series systems with the considerably long life time. Test items are first run simultaneously at use condition for a specified time, and the surviving items are then run at accelerated condition until a predetermined censoring time. The optimal criterion for the change time to accelerated condition is to minimized either the generalized asymptotic variance of maximum likelihood estimators of the hazard rates at use condition and the acceleration factors or the asymptotic variance of the maximum likelihood estimators of the acceleration factors.

  • PDF

Design of Step-Stress Accelerated Life Tests for Weibull Distributions with a Nonconstant Shape Parameter

  • Kim, C. M.;D. S. Bai
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.415-433
    • /
    • 1999
  • This paper considers the design of step-stress accelerated life tests for the Weibull distribution with a nonconstant shape parameter under Type I censoring. It is assumed that scale and shape parameters are log-linear functions of (possibly transformed) stress and that a cumulative exposure model holds for the effect of changing stress. The asymptotic variance of the maximum likelihood estimator of a stated quantile at design stress is used as an optimality criterion. The optimum three step-stress plans are presented for selected values of design parameters and the effects of errors in pre- estimates of the design parameters are investigated.

  • PDF

On Asymptotic Properties of Bootstrap for Autoregressive Processes with Regularly Varying Tail Probabilities

  • Kang, Hee-Jeong
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 1997
  • Let $X_{t}$ = .beta. $X_{{t-1}}$ + .epsilon.$_{t}$ be an autoregressive process where $\mid$.beta.$\mid$ < 1 and {.epsilon.$_{t}$} is independent and identically distriubted with regularly varying tail probabilities. This process is called the asymptotically stationary first-order autoregressive process (AR(1)) with infinite variance. In this paper, we obtain a host of weak convergences of some point processes based on bootstrapping of { $X_{t}$}. These kinds of results can be generalized under the infinite variance assumption to ensure the asymptotic validity of the bootstrap method for various functionals of { $X_{t}$} such as partial sums, sample covariance and sample correlation functions, etc.ions, etc.

  • PDF

Design of Optimal Accelerated Life Tests for the Exponential Failure Distribution under Intermittent Inspection (지수고장분포(指數故障分布) 및 단속검사하(斷續檢査下)의 최적(最適) 가속수명시험(加速壽命侍險)의 설계(設計))

  • Seo, Sun-Keun;Choi, Jong-Deuk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.95-108
    • /
    • 1991
  • For the case where the lifetime at a constant stress level has exponential distribution, optimal accelerated life test plans are developed under the assumptions of intermittent inspection and Type I censoring. In a optimal plan, the low and high stress levels, the proportion of test units allocated and the inspection times at each stress are determined such that the asymptotic variance of the maximum likelihood estimator of logarithmic transformed mean at the use condition is minimized. In addition to the optimal plan in which numerical technique to solve the set of nonlinear equations must be employed to determine inspection times at each stress level, we also propose another plans which employ equally-spaced or equal probability inspection schemes at two overstress levels of corresponding optimal one. For both optimal and proposed plans, computational results indicate that the asymptotic variance of the estimated mean at the use stress is insensitive to number of inspections at overstress levels for the range of parameter values considered.

  • PDF

Optimal design of Partially Accelerated Life Testing for the Parallel Systems (병렬형 시스템의 부분적 가속수명검사를 위한 최적계획)

  • Park, Hee-Chang;Lee, Suk-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.4
    • /
    • pp.14-28
    • /
    • 1996
  • We consider optimal designs of partially accelerated life testing which is deviced for parallel systems with the considerably long life time. In partially step-stress life testing, test items are first run simultaneously at use condition for a specified time, and the surviving items are then run at accelerated condition until a predetermined censoring time. In partially constant-stress life testing, test items are run at either use or accelerated condition only until a specified censoring time. The optimal criterion for each test is to minimize either the generalized asymptotic variance of maximum likelihood(ML) estimators of the hazard rates at use condition and the acceleration factors or the asymptotic variance of the ML estimators of the acceleration factors.

  • PDF