• Title/Summary/Keyword: asymmetric changes

Search Result 176, Processing Time 0.028 seconds

Predictions of non-uniform tip clearance effects on the flow field in an axial compressor

  • Kang, Young-Seok;Kang, Shin-Hyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.743-750
    • /
    • 2008
  • Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution 'seed' results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is involved when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes have an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume analysis of the circumferential momentum leads to well-known Alford's force. Alford's force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford's force at the high flow coefficient. Alford's force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang(2006).

  • PDF

A Study on Converter Topology to Drive Switched Reluctance Motor (SRM) (스위치드 릴럭턴스 전동기(SRM) 구동용 Converter Topology 연구)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • Switched Reluctance Motor (SRM) has a characteristic that the inductance changes very nonlinearly depending on the magnitude of the current and the relative position of the rotor and stator, and the torque is generated In consideration of these problems, many studies have been conducted on a topology for driving that can improve efficiency and performance in an existing asymmetric bridge converter in order to simplify the circuit and economic efficiency. Therefore, in this paper, we want to check the performance by comparing and analyzing each converter used by applying it as a topology for SRM driving. The driving converters applied to the comparison and analysis are Conventional C-dump, Modified C-dump, Energy efficient C-dump, Resonant C-dump converter with C-dump converter type structure and the most widely used asymmetric bridge converter and 6-Switch inverter that used for general motors.

Analysis on Subthreshold Swing of Asymmetric Junctionless Double Gate MOSFET for Parameters for Gaussian Function (가우스 함수의 파라미터에 따른 비대칭형 무접합 이중 게이트 MOSFET의 문턱전압 이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.255-263
    • /
    • 2022
  • The subthreshold swing (SS) of an asymmetric junctionless double gate (AJLDG) MOSFET is analyzed by the use of Gaussian function. In the asymmetric structure, the thickness of the top/bottom oxide film and the flat-band voltages of top gate (Vfbf) and bottom gate (Vfbb) could be made differently, so the change in the SS for these factors is analyzed with the projected range and standard projected deviation which are parameters for the Gaussian function. An analytical subthreshold swing model is presented from the Poisson's equation, and it is shown that this model is in a good agreement with the numerical model. As a result, the SS changes linearly according to the geometric mean of the top and bottom oxide film thicknesses, and if the projected range is less than half of the silicon thickness, the SS decreases as the top gate oxide film is smaller. Conversely, if the projected range is bigger than a half of the silicon thickness, the SS decreases as the bottom gate oxide film is smaller. In addition, the SS decreases as Vfbb-Vfbf increases when the projected range is near the top gate, and the SS decreases as Vfbb-Vfbf decreases when the projected range is near the bottom gate. It is necessary that one should pay attention to the selection of the top/bottom oxide thickness and the gate metal in order to reduce the SS when designing an AJLDG MOSFET.

Enhancing Robustness of Floor Vibration Control by Using Asymmetric Tuned Mass Damper (비대칭 동조질량감쇠기를 활용한 바닥진동제어의 강건성 향상 방안)

  • Ko, A Ra;Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.177-189
    • /
    • 2014
  • When floor vibration problems occur in existing buildings, TMD (tuned mass damper) can be a viable alternative to resolving the problem. Only when TMD has been exactly tuned to the natural frequency of the floor, it can control the vibration as intended in design. However, TMD gets inefficient in the situation where the natural frequency changes as a result of the uncontrollable variation of the floor mass weight. This physical phenomenon is often called as TMD-off-tuning. This study proposes asymmetric TMD for enhancing the robustness of floor vibration control against uncertain natural frequencies. The proposed TMD features two asymmetric linear springs such that the floor vibrational energy can be dissipated through both the translational and rotational motion. An easy-to-use graphical optimization method was developed in this study. The asymmetric TMD proposed outperformed in vibration control by 28% compared to that of conventional TMD. The robustness of asymmetric TMD of this study was two times higher than that of conventional TMD.

Analysis of Dynamic Behavior of Group Piles in Asymmetric Ground (비대칭지반에 설치된 무리말뚝의 동적거동 분석)

  • Kyungil Cho;Hongsig Kang;Kusic Jeong;Kwangkuk Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.41-49
    • /
    • 2023
  • Structures such as bridge columns installed on the asymmetric ground such as mountain areas and sloping ground are subject to various loads such as wind, temperature, earthquake, and etc. The pile foundation is generally applied to bridge columns on the asymmetric ground in order to stably support structures. The behavior of the pile foundation supporting bridge columns changes due to various load conditions. In particular, ground-pile-structure interactions should be studied to analyze the behavior of the pile foundation that supports bridge columns effected by dynamic loads such as earthquakes. The pile foundation installed on the asymmetric ground effected by the earthquake has the complicated dynamic interaction between the foundation and the ground due to the ground slope, the difference in soil resistance according to the shaking direction, and the ground movements. In this study, the 1g shaking table tests were conducted to confirm the effect of the slope of the sloping ground on the dynamic behavior of group piles supporting the superstructure installed at the berm of the sloping sandy soil which is the asymmetric ground. The result shows that the acceleration of the pile cap and the superstructure decrease as the slope of the sloping ground increase, and the slope of the dynamic p-y curve of the pile decrease.

Inventory Investment and Business Cycle: Asymmetric Dynamics of Inventory Investment over the Business Cycle Phases (재고투자와 경기변동: 재고투자 동학의 경기국면별 비대칭성)

  • Seo, Byeongseon;Jang, Keunho
    • Economic Analysis
    • /
    • v.24 no.3
    • /
    • pp.1-36
    • /
    • 2018
  • When it comes to explaining the relationship between inventory investment and business fluctuations, the production smoothing theory and the stock-out avoidance theory take contradictory stances. Decision-making related to inventory investments of corporations is thought to be influenced by both motives, but the relative sizes or directions of their respective influences can differ depending upon the phase of the business cycle. Against this backdrop, this paper differs from existing studies in that it theoretically tests the relative significances of the production smoothing and stock-out avoidance motives in the inventory investment dynamics, while placing its analytical focus on determining the existence and patterns of the asymmetric dynamics of inventory investment over the business cycle phases. To this end this paper sets up a non-linear model that is expanded from the existing linear inventory investment model, and checks whether its predictive power is better than that of the existing model. The results of analysis confirm the nature of the asymmetric dynamics of inventory investment over the business cycle phases. A stock-out avoidance motive appears but there is no significant production smoothing motive in boom times. In downturns, in contrast, the stock-out avoidance motive is insignificant, but a quality of asymmetric dynamics in which changes in inventory cause the deepening of recessions, due to the non-convexity of production costs proposed by Ramey (1991), is detected. This paper confirms that a model considering the asymmetric dynamics of inventory investment can have better predictive power than one that does not consider it, through within-sample and out-of-sample predictions and various predictive power tests. These research results are expected to be useful for economic forecasting, through their enhancement of the understandings of the inventory investment dynamics and of the nature of its business cycle destabilization.

Asymmetric Impacts of the Crude Oil Price Changes on Korea's Export Prices (국제유가 변동이 수출물가에 미치는 비대칭적 영향)

  • Hong, Sung-Wook;Kim, Hwa-Nyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.663-670
    • /
    • 2016
  • This paper analyzes the asymmetric pass-through effects of crude oil price changes on export prices in Korea's manufacturing sector using a nonlinear autoregressive distributed lag (NARDL) model. These pass-through effects are important for Korean companies that are highly dependent on exports. Because the effects differ by industry, eight sectors of the manufacturing industry were examined. The model is effective for separately testing the long-term and short-term differences between the export-price pass-through effects when crude oil prices increase and decrease. The estimation results show that there is positive pass-through to export prices as crude oil prices change, and there are asymmetric effects in some manufacturing sectors. Short-term asymmetries were detected in the export prices of five sectors that include general machinery and transport equipment, and significant long-term asymmetries were found for petroleum and coal products and for textile and leather products. The long-term export price of oil and coal products rose by 0.992% with a 1% increase in the oil price and fell by 0.977% with 1% decrease. Therefore, corporate strategies and government export policies should be established in accordance with these asymmetric pass-through effects.

An Analysis of the Asymmetry of Domestic Gasoline Price Adjustment to the Crude Oil Price Changes: Using Quantile Autoregressive Distributed Lag Model (국제 유가에 대한 국내 휘발유의 가격 조정 분석: 분위수 자기회귀시차분포 모형을 사용하여)

  • Hyung-Gun Kim
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.755-775
    • /
    • 2022
  • This study empirically analyzes that the asymmetry of domestic gasoline price adjustment to the crude oil price changes can vary depending on the level of gasoline price using quantile autoregressive distributed lag model. The data used are the weekly average Dubai price, domestic gasoline price at refiners and gas stations from the first week of May 2008 to the second week of October 2022. The study estimates three price transmission channels: changes in gas station gasoline prices in response to changes in Dubai oil prices, changes in refiners gasoline prices in response to changes in Dubai oil prices, and changes in gas station prices relative to refiners gasoline prices. As a result, the price adjustment of refiner's gasoline price with respect to Dubai oil price appears asymmetrically across all quantiles of gasoline price, whereas the adjustment of gas station prices for Dubai oil price and refiner's gasoline price tend to be more asymmetric as the quantile of gasoline price increases. Such a result is presumed to be due to changes in the inventory cost of gas stations. When the burden of inventory cost is high, gas stations have an incentive to more actively pass the increased buying price on their selling price.

Spatio-Temporal Changes in Seasonal Extreme Temperature Events in the Republic of Korea (우리나라 사계절 극한기온현상의 시.공간적 변화)

  • Choi, Gwangyong
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.4
    • /
    • pp.489-508
    • /
    • 2014
  • The purpose of this study is to clarify the spatio-temporal patterns of changes in seasonal extreme temperature events in the Republic of Korea based on daily maximum and minimum temperature data sets observed at 61 weather stations for the recent 40 year period (1973~2012). According to analysis of regional average data, in spring increases of warm days are most distinct, while in summer reductions of cool nights and increases of warm nights are most noticeable. The similar patterns to those in summer are observed in fall, while in winter reductions of cool days and nights are notable. Regardless of the magnitude of urbanization, changes in nighttime extreme temperature events prevail in transitional periods between seasons, while those in daytime extreme temperature events do so only in particular months. In contrast, cool days in spring and summer, warm days in summer and warm nights in winter do not show any statistically-significant changes at most of stations. The sensitivity of seasonal extreme temperature events to increases of seasonal average extreme temperature is greatest in the case of warm days ($+6.3days/^{\circ}C$) and cool nights ($-6.2days/^{\circ}C$) in spring, warm nights ($+10.4days/^{\circ}C$) and days ($+9.5days/^{\circ}C$) in summer, warm days ($+7.7days/^{\circ}C$) in fall, and cool nights ($-4.7/^{\circ}C$) in winter, respectively. These results indicate that changes in seasonal extreme temperature events and their sensitivity to changes in seasonal climate means under a warmer climate are occurring with seasonally and diurnally asymmetric magnitudes in Korea due to complex climate feedbacks.

  • PDF

Extention of Kailar Accountability Logic for Symmetric Key Digital Signature and Accountavility Analysis of an Electronic Payment Potocol (대칭키 전자서명을 위한 Kailar 책임 로직 (Accountability Logic)의 확장 및 전자지불 프로토콜의 책임분석)

  • Kim, Yeong-Dal;Han, Seon-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.3046-3059
    • /
    • 1999
  • Kailar Accountability Logic proposed for the accountability analysis of communication protocols that require accountability and use asymmetric key digital signature is extended for protocols that use symmetric key digital signature. A proposed electronic micropayment protocol that uses symmetric key digital signature is analyzed to illustrate the use of the extend logic in detecting its lack f accountability and suggesting changes to enhance its accountability.

  • PDF