• 제목/요약/키워드: astronomical observations software

검색결과 38건 처리시간 0.025초

원격 유성 분광 관측 시스템 구축과 관측 사례 연구 (Establishment of Remote Meteor Spectroscopic Observation System and Observation Case Study)

  • 최동열
    • 한국지구과학회지
    • /
    • 제43권1호
    • /
    • pp.1-22
    • /
    • 2022
  • 운장산 천문대에 있는 원격 유성 분광 관측 시스템의 설치 및 운영에 대해 자세히 설명한다. 총 3대의 고감도 CCD 카메라가 설치되었으며 2대의 CCD 카메라에는 렌즈 전면에 회절 격자를 부착하였다. 시스템은 2019년 11월에 설치되었고, f/1.2 렌즈와 결합된 고감도의 "Watec-902H2" 카메라가 사용되었다. 스펙트럼 관찰을 위한 회절 격자는 500 l/mm이 사용되었다. 관측은 2019년 11월부터 2020년 6월까지 진행되었다. 유성 탐지 및 후속 분석을 위해 SonotaCo UFO 소프트웨어 제품군을 사용했으며, 유성 스펙트럼을 분석하기 위해서는 RSpec 소프트웨어를 사용하였다. 관측영상을 활용하기 위해 Astronomical Calibration과 Photometric Calibration을 수행하였고, 최종적으로 유성의 화학 성분을 분석하였다. 우리는 유성 분광 관측 시스템의 설치와 설정/운영 경험을 설명하고 첫 번째 관측 결과를 제시한다. 또한 결과를 통해 유성의 기원에 대한 간략한 정보를 제공하고자 한다.

GPS를 이용한 서울대학교 전파천문대의 WGS84 좌표 결정 (The Determination of WGS84 coordinates for Seoul National University Radio Astronomy Observatory)

  • 조정호;박필호;박종욱;홍승수;구본철
    • 천문학논총
    • /
    • 제15권1호
    • /
    • pp.31-34
    • /
    • 2000
  • We determined the precise three dimensional WGS84 Coordinates and the sea level height of Seoul Radio Astronomy Observatory (SRAO). In this study, we performed the simultaneous GPS observations at SRAO and Seoul GPS Reference Station(SGRS) of Korea Astronomy Observatory(KAO) for 3.5 hours from 17KST on October 27, 1999. We employed two different antennas, i.e., chokering antenna at SGRS of KAO and L1/L2 compact with groundplane antenna at SRAO. But we employed same type of receivers, i.e., Trimble 4000SSI at both observing places. The observed data were processed by GPSURVEY 2.30 software of Trimble with L1/L2 ION Free technique and broadcasting ephemeris of GPS Satellites because of very short baseline between SGRS of KAO and SRAO. We determined WGS84 latitude, longitude, height and the sea level height of SRAO with $37^{\circ}\;27'\;15.'\;6846N\pm0.'\;0004,\;126^{\circ}\;57'\;19.'\;0727E\pm0.'\;0002,\;204.89m\pm0.02m,\;181.38m\pm0.17m$, respectively.

  • PDF

Auto-guiding Performance from IGRINS Test Observations (Immersion GRating INfrared Spectrograph)

  • Lee, Hye-In;Pak, Soojong;Le, Huynh Anh N.;Kang, Wonseok;Mace, Gregory;Pavel, Michael;Jaffe, Daniel T.;Lee, Jae-Joon;Kim, Hwihyun;Jeong, Ueejeong;Chun, Moo-Young;Park, Chan;Yuk, In-Soo;Kim, Kangmin
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.92.1-92.1
    • /
    • 2014
  • In astronomical spectroscopy, stable auto-guiding and accurate target centering capabilities are critical to increase the achievement of high observation efficiency and sensitivity. We developed an instrument control software for the Immersion GRating INfrared Spectrograph (IGRINS), a high spectral resolution near-infrared slit spectrograph with (R=40,000). IGRINS is currently installed on the McDonald 2.7 m telescope in Texas, USA. We had successful commissioning observations in March, May, and July of 2014. The role of the IGRINS slit-viewing camera (SVC) is to move the target onto the slit, and to provide feedback about the tracking offsets for the auto-guiding. For a point source, we guide the telescope with the target on the slit. While for an extended source, we use another a guide star in the field offset from the slit. Since the slit blocks the center of the point spread function, it is challenging to fit the Gaussian function to guide and center the target on slit. We developed several center finding algorithms, e.g., 2D-Gaussian Fitting, 1D-Gaussian Fitting, and Center Balancing methods. In this presentation, we show the results of auto-guiding performances with these algorithms.

  • PDF

NALYSIS OF THE ECLIPSING BINARY SDSS J1021+1744: A WDMS SYSTEM WITH UNUSUAL DIPS

  • CHANTHORN, KHUNAGORN;SANGUANSAK, NUANWAN;IRAWATI, PUJI;DHILLON, VIK S.;MARSH, TOM R.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.219-221
    • /
    • 2015
  • We present our recent observations of SDSS J102102.25+174439.9, a new eclipsing white dwarf - main sequence WDMS binary with an orbital period of 0.14 days. This system belongs to the post common-envelope binary group as shown by the spectrum from the Sloan Digital Sky Survey. We obtained our data using the ULTRASPEC instrument installed on the 2.4-m telescope at the Thai National Observatory (TNO). Our multi-band observations reveal an unusual and persistent drop in brightness after the primary eclipse. These dips, which appear to show variations in amplitude, also have a complex shape that changes within days. Dips in WDMS systems have been observed on only one other occasion, in the light curve of QS Vir prior to the eclipse of the white dwarf. The dips in SDSS J1021+1744 are unique because they are present at different wavelengths and they occur approximately at similar phases. Hosting a DA white dwarf and an M4 companion star, this system is known to be the only WDMS to show these kind of dips in its light curve. It is possible that these dips are caused by ejected materials from an active companion star, such as in QS Vir. The light curve in the g' filter exhibits deep and narrow features, implying that the material which passes in front of the white dwarf in SDSS J1021 must be dense and small in size. Furthermore, we try to constrain the stellar and orbital parameters of SDSS J1021+1744 using the Binary Maker 3 software. We use g' and r' data for our light curve analysis to have a better approximation for the red dwarf star.

Development of Autoguiding system for IGRINS

  • 이혜인;강원석;박수종;권봉용;이성원;천무영;정의정;육인수;김강민;박찬
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.73.2-73.2
    • /
    • 2013
  • An autoguiding system for astronomical observations should be accurate and stable for efficient data taking. IGRINS (Immersion Grating Infrared Spectrograph) is a high resolution near-IR spectrograph which is now developed by Korea Astronomy and Space Science Institute and the University of Texas. We plan to attach this instrument on the 2.7m telescope at the McDonald observatory in 2013. IGRINS consists on three detector modules, i. e., H and K band spectrograph modules and a K band slit camera module. We use the slit camera for autoguiding of the telescope. In this poster, we describe the system architecture of the hardware and software of the autoguiding system, and the algorithm which would effectively find centers of stellar images on or outside of the slit of the infrared array.

  • PDF

Development of KHU Automatic Observing Software for McDonald 30inch telescope (KAOS30)

  • Ji, Tae-Geun;Byeon, Seoyeon;Lee, Hye-In;Jung, Hyunsoo;Lee, Sang-Yun;Hwang, Sungyong;Choi, Changsu;Gibson, Coyne A.;Kuehne, John;Marshall, Jennifer;Im, Myungshin;Pak, Soojong
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.57.1-57.1
    • /
    • 2017
  • Automatic observing is the most efficient system for sky surveys that image many targets over large areas of the sky. Such a system requires the integrating control software that systematically manages astronomical instruments that are not connected to each other. In February of 2017, we installed a wide-field 10 inch telescope for Supernovae survey on the McDonald 30 inch telescope as a piggyback system. However, during the observations, information such as target coordinates could not be exchanged with the telescope mount. The reason is the program that controls the telescope control system (TCS) and the program that controls the imager operate on independent PCs. KAOS30 is an integrated observing software developed to improve this environment. The software is composed of four packages that are the Telescope Control Package (TCP), the Data Acquisition Package (DAP), the Auto Focus Package (AFP), and the Script Mode Package (SMP). The TCP communicates to the TCS and also communicates weather information. SMP supports automatic observing in a script mode, which improves the efficiency of the survey. KAOS30 was developed based on Visual C ++ and runs on the Windows operating system. It also supports the ASCOM driver platform for various manufacturers. The instruments that support ASCOM can be installed without modification of the program code. KAOS30 can be applied as software for many different telescopes in future projects.

  • PDF

PERFORMANCE OF THE TRAO 13.7-M TELESCOPE WITH NEW SYSTEMS

  • Jeong, Il-Gyo;Kang, Hyunwoo;Jung, Jaehoon;Lee, Changhoon;Byun, Do-Young;Je, Do-Heung;Kang, Sung-Ju;Lee, Youngung;Lee, Chang Won
    • 천문학회지
    • /
    • 제52권6호
    • /
    • pp.227-233
    • /
    • 2019
  • We report the performance of the 13.7-meter Taeduk Radio Astronomy Observatory (TRAO) radio telescope. The telescope has been equipped with a new receiver, SEQUOIA-TRAO, a new backend system, FFT2G, and a new VxWorks operating system. The receiver system features a 16-pixel focal plane array using high-performance MMIC preamplifiers; it shows very low system noise levels, with system noise temperatures from 150 K to 450 K at frequencies from 86 to 115 GHz. With the new backend system, we can simultaneously obtain 32 spectra, each with a velocity coverage of 163 km s-1 and a resolution of 0.04 km s-1 at 115 GHz. The new operating system, VxWorks, has successfully handled the LMTMC-TRAO observing software. The main observing method is the on-the-fly (OTF) mapping mode; a position-switching mode is available for small-area observations. Remote observing is provided. The antenna surface has been newly adjusted using digital photogrammetry, achieving a rms surface accuracy better than 130 ㎛. The pointing uncertainty is found to be less than 5" over the entire sky. We tested the new receiver system with multi-frequency observations in OTF mode. The aperture efficiencies are 43±1%, 42±1%, 37±1%, and 33±1%, the beam efficiencies are 45±2%, 48±2%, 46±2%, and 41±2% at 86, 98, 110, and 115 GHz, respectively.

AUTO-GUIDING SYSTEM FOR CQUEAN (CAMERA FOR QUASARS IN EARLY UNIVERSE)

  • Kim, Eun-Bin;Park, Won-Kee;Jeong, Hyeon-Ju;Kim, Jin-Young;Kuehne, John;Kim, Dong-Han;Kim, Han-Geun;Odoms, Peter S.;Chang, Seung-Hyuk;Im, Myung-Shin;Pak, Soo-Jong
    • 천문학회지
    • /
    • 제44권4호
    • /
    • pp.115-123
    • /
    • 2011
  • To perform imaging observations of optically red objects such as high redshift quasars and brown dwarfs, the Center for the Exploration of the Origin of the Universe (CEOU) recently developed an optical CCD camera, Camera for QUasars in EArly uNiverse (CQUEAN), which is sensitive at 0.7-1.1 ${\mu}m$. To enable observations with long exposures, we develop an auto-guiding system for CQUEAN. This system consists of an off-axis mirror, a baffle, a CCD camera, a motor and a differential decelerator. To increase the number of available guiding stars, we design a rotating mechanism for the off-axis guiding camera. The guiding field can be scanned along the 10 arcmin ring offset from the optical axis of the telescope. Combined with the auto-guiding software of the McDonald Observatory, we confirm that a stable image can be obtained with an exposure time as long as 1200 seconds.

NEW DESIGN CONCEPT FOR UNIVERSAL CCD CONTROLLER

  • Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • 제11권1호
    • /
    • pp.41-52
    • /
    • 1994
  • Currently, the CCDs are widely used in astronomical observations either in direct imaging use or spectroscopic mode. However according to the recent technical advances, new large format CCDs are rapidly developed which have better performances with higher quantum efficiency and sensitivity. In many cases, some microprocessors have been adopted to deal with necessary digital logic for a CCD imaging system. This could often lack the flexibility of a system for a user for to upgrade with new devices, especially if it is a commercial product. A new design concept has been explored which could provide the opportunity to deal with any format of devices from any manufactures effectively for as tronomical purposes. Recently available PLD (Programmable Logic Devices)technology makes it possible to develop such digital circuit design, which can be integrated into a single component, instead of using micrprocessors. The design concept could dramatically increase the efficiency and flexibility of a CCD imaging system, particularly when new or large format devices are available and to upgrade the performance of a system. Some variable system control parameters can be selected by a user with a wider range of choice. The software can support such functional requirements very conveniently. This approach can be applied not only to astronomical purpose, but also to some related fields, such as remote sensing and industrial applications.

  • PDF

Rotational and Observational Properties of NEA and Asteroid Family

  • Kim, Myung-Jin
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.96.1-96.1
    • /
    • 2014
  • The rotation of asteroids can help reveal not only the fundamental characteristics of asteroids but also the origin and evolution of our Solar System. From the photometric observations for NEA 162173 (1999 JU3) and Maria family asteroids using 0.5 m- to 2 m- class telescopes at 10 observatories in the northern hemisphere, I obtained a total of 260 lightcurves for 97 asteroids and derived synodic rotational periods for 51 objects, including newly obtained periods of 34 asteroids. For the sake of efficiency, I developed an observation scheduler, SMART (Scheduler for Measuring Asteroid RoTation) and a photometric analysis software subsystem, ASAP (Asteroid Spin Analysis Package). Based on the lightcurve analysis of NEA 162173 (1999 JU3) and Maria family asteroids, 1) I present the rotational and observational characteristics of 1999 JU3 and provided the Hayabusa-2 Science team with the information on pole orientations, 2) I investigated correlations among rotational periods, amplitudes of lightcurves, and sizes, and conclude that the rotational properties of old-type family asteroids have been changed considerably by the YORP effect. 3) Finally, I found the Yarkovsky footprints on the Maria asteroid family and estimated that approximately 37 to 75 Maria family asteroids larger than 1 km have entered the near-Earth space every 100 Myr. This study should reveal the collisional history and transport route of the members from the resonance region to the near Earth space, for the first time.

  • PDF